Files
swift-mirror/include/swift/Runtime/HeapObject.h
David Farler cd65a8e0b0 Template metadata structures
- Add RuntimeTarget template This will allow for converting between
  metadata structures for native host and remote target architectures.

- Create InProcess and External templates for stored pointers

Add a few more types to abstract pointer access in the runtime
structures but keep native in-process pointer access the same as that
with a plain old pointer type.

There is now a notion of a "stored pointer", which is just the raw value
of the pointer, and the actual pointer type, which is used for loads.
Decoupling these allows us to fork the behavior when looking at metadata
in an external process, but keep things the same for the in-process
case.

There are two basic "runtime targets" that you can use to work with
metadata:

InProcess: Defines the pointer to be trivially a T* and stored as a
uintptr_t. A Metadata * is exactly as it was before, but defined via
AbstractMetadata<InProcess>.

External: A template that requires a target to specify its pointer size.

ExternalPointer: An opaque pointer in another address space that can't
(and shouldn't) be indirected with operator* or operator->.  The memory
reader will fetch the data explicitly.
2016-03-02 21:25:04 -08:00

1036 lines
33 KiB
C++

//===--- HeapObject.h - Swift Language Allocation ABI -----------*- C++ -*-===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2016 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// Swift Allocation ABI
//
//===----------------------------------------------------------------------===//
#ifndef SWIFT_RUNTIME_ALLOC_H
#define SWIFT_RUNTIME_ALLOC_H
#include <cstddef>
#include <cstdint>
#include "swift/Runtime/Config.h"
#if SWIFT_OBJC_INTEROP
#include <objc/objc.h>
#endif /* SWIFT_OBJC_INTEROP */
// Bring in the definition of HeapObject
#include "../../../stdlib/public/SwiftShims/HeapObject.h"
namespace swift {
struct InProcess;
template <typename Runtime> struct TargetMetadata;
using Metadata = TargetMetadata<InProcess>;
template <typename Runtime> struct TargetHeapMetadata;
using HeapMetadata = TargetHeapMetadata<InProcess>;
struct OpaqueValue;
/// Allocates a new heap object. The returned memory is
/// uninitialized outside of the heap-object header. The object
/// has an initial retain count of 1, and its metadata is set to
/// the given value.
///
/// At some point "soon after return", it will become an
/// invariant that metadata->getSize(returnValue) will equal
/// requiredSize.
///
/// Either aborts or throws a swift exception if the allocation fails.
///
/// \param requiredSize - the required size of the allocation,
/// including the header
/// \param requiredAlignmentMask - the required alignment of the allocation;
/// always one less than a power of 2 that's at least alignof(void*)
/// \return never null
///
/// POSSIBILITIES: The argument order is fair game. It may be useful
/// to have a variant which guarantees zero-initialized memory.
SWIFT_RT_ENTRY_VISIBILITY
extern "C"
HeapObject *swift_allocObject(HeapMetadata const *metadata,
size_t requiredSize,
size_t requiredAlignmentMask)
SWIFT_CC(RegisterPreservingCC);
SWIFT_RUNTIME_EXPORT
extern "C"
HeapObject *(*SWIFT_CC(RegisterPreservingCC) _swift_allocObject)(
HeapMetadata const *metadata,
size_t requiredSize,
size_t requiredAlignmentMask);
/// Initializes the object header of a stack allocated object.
///
/// \param metadata - the object's metadata which is stored in the header
/// \param object - the pointer to the object's memory on the stack
/// \returns the passed object pointer.
SWIFT_RUNTIME_EXPORT
extern "C" HeapObject *swift_initStackObject(HeapMetadata const *metadata,
HeapObject *object);
/// Performs verification that the lifetime of a stack allocated object has
/// ended. It aborts if the reference counts of the object indicate that the
/// object did escape to some other location.
SWIFT_RUNTIME_EXPORT
extern "C" void swift_verifyEndOfLifetime(HeapObject *object);
/// A structure that's two pointers in size.
///
/// C functions can use the TwoWordPair::Return type to return a value in
/// two registers, compatible with Swift's calling convention for tuples
/// and structs of two word-sized elements.
template<typename A, typename B>
struct TwoWordPair {
A first;
B second;
TwoWordPair() = default;
TwoWordPair(A first, B second);
// FIXME: rdar://16257592 arm codegen doesn't call swift_allocBox correctly.
// Structs are returned indirectly on these platforms, but we want to return
// in registers, so cram the result into an unsigned long long.
// Use an enum class with implicit conversions so we don't dirty C callers
// too much.
#if __arm__ || __i386__ || defined(__CYGWIN__)
#if defined(__CYGWIN__)
enum class Return : unsigned __int128 {};
#else
enum class Return : unsigned long long {};
#endif
operator Return() const {
union {
TwoWordPair value;
Return mangled;
} reinterpret = {*this};
return reinterpret.mangled;
}
/*implicit*/ TwoWordPair(Return r) {
union {
Return mangled;
TwoWordPair value;
} reinterpret = {r};
*this = reinterpret.value;
}
#else
using Return = TwoWordPair;
#endif
};
template<typename A, typename B>
inline TwoWordPair<A,B>::TwoWordPair(A first, B second)
: first(first), second(second)
{
static_assert(sizeof(A) == sizeof(void*),
"first type must be word-sized");
static_assert(sizeof(B) == sizeof(void*),
"second type must be word-sized");
static_assert(alignof(TwoWordPair) == alignof(void*),
"pair must be word-aligned");
}
using BoxPair = TwoWordPair<HeapObject *, OpaqueValue *>;
/// Allocates a heap object that can contain a value of the given type.
/// Returns a Box structure containing a HeapObject* pointer to the
/// allocated object, and a pointer to the value inside the heap object.
/// The value pointer points to an uninitialized buffer of size and alignment
/// appropriate to store a value of the given type.
/// The heap object has an initial retain count of 1, and its metadata is set
/// such that destroying the heap object destroys the contained value.
SWIFT_RUNTIME_EXPORT
extern "C" BoxPair::Return swift_allocBox(Metadata const *type);
SWIFT_RUNTIME_EXPORT
extern "C" BoxPair::Return (*_swift_allocBox)(Metadata const *type);
// Allocate plain old memory. This is the generalized entry point
// Never returns nil. The returned memory is uninitialized.
//
// An "alignment mask" is just the alignment (a power of 2) minus 1.
SWIFT_RT_ENTRY_VISIBILITY
extern "C"
void *swift_slowAlloc(size_t bytes, size_t alignMask)
SWIFT_CC(RegisterPreservingCC);
// If the caller cannot promise to zero the object during destruction,
// then call these corresponding APIs:
SWIFT_RT_ENTRY_VISIBILITY
extern "C"
void swift_slowDealloc(void *ptr, size_t bytes, size_t alignMask)
SWIFT_CC(RegisterPreservingCC);
/// Atomically increments the retain count of an object.
///
/// \param object - may be null, in which case this is a no-op
///
/// POSSIBILITIES: We may end up wanting a bunch of different variants:
/// - the general version which correctly handles null values, swift
/// objects, and ObjC objects
/// - a variant that assumes that its operand is a swift object
/// - a variant that can safely use non-atomic operations
/// - maybe a variant that can assume a non-null object
/// It may also prove worthwhile to have this use a custom CC
/// which preserves a larger set of registers.
SWIFT_RT_ENTRY_VISIBILITY
extern "C"
void swift_retain(HeapObject *object)
SWIFT_CC(RegisterPreservingCC);
SWIFT_RUNTIME_EXPORT
extern "C"
void (*SWIFT_CC(RegisterPreservingCC) _swift_retain)(HeapObject *object);
SWIFT_RT_ENTRY_VISIBILITY
extern "C"
void swift_retain_n(HeapObject *object, uint32_t n)
SWIFT_CC(RegisterPreservingCC);
SWIFT_RUNTIME_EXPORT
extern "C"
void (*SWIFT_CC(RegisterPreservingCC) _swift_retain_n)(HeapObject *object,
uint32_t n);
static inline void _swift_retain_inlined(HeapObject *object) {
if (object) {
object->refCount.increment();
}
}
/// Atomically increments the reference count of an object, unless it has
/// already been destroyed. Returns nil if the object is dead.
SWIFT_RT_ENTRY_VISIBILITY
extern "C"
HeapObject *swift_tryRetain(HeapObject *object)
SWIFT_CC(RegisterPreservingCC);
SWIFT_RUNTIME_EXPORT
extern "C"
HeapObject * (* SWIFT_CC(RegisterPreservingCC) _swift_tryRetain)(HeapObject *);
/// Returns true if an object is in the process of being deallocated.
SWIFT_RUNTIME_EXPORT
extern "C" bool swift_isDeallocating(HeapObject *object);
SWIFT_RUNTIME_EXPORT
extern "C"
bool (* SWIFT_CC(RegisterPreservingCC) _swift_isDeallocating)(HeapObject *);
/// Attempts to atomically pin an object and increment its reference
/// count. Returns nil if the object was already pinned.
///
/// The standard protocol is that the caller is responsible for
/// calling swift_unpin on the return value.
///
/// The object reference may not be nil.
SWIFT_RT_ENTRY_VISIBILITY
extern "C" HeapObject *swift_tryPin(HeapObject *object)
SWIFT_CC(RegisterPreservingCC);
/// Given that an object is pinned, atomically unpin it and decrement
/// the reference count.
///
/// The object reference may be nil (to simplify the protocol).
SWIFT_RT_ENTRY_VISIBILITY
extern "C" void swift_unpin(HeapObject *object)
SWIFT_CC(RegisterPreservingCC);
/// Atomically decrements the retain count of an object. If the
/// retain count reaches zero, the object is destroyed as follows:
///
/// size_t allocSize = object->metadata->destroy(object);
/// if (allocSize) swift_deallocObject(object, allocSize);
///
/// \param object - may be null, in which case this is a no-op
///
/// POSSIBILITIES: We may end up wanting a bunch of different variants:
/// - the general version which correctly handles null values, swift
/// objects, and ObjC objects
/// - a variant that assumes that its operand is a swift object
/// - a variant that can safely use non-atomic operations
/// - maybe a variant that can assume a non-null object
/// It's unlikely that a custom CC would be beneficial here.
SWIFT_RT_ENTRY_VISIBILITY
extern "C"
void swift_release(HeapObject *object)
SWIFT_CC(RegisterPreservingCC);
SWIFT_RUNTIME_EXPORT
extern "C" void (*SWIFT_CC(RegisterPreservingCC)
_swift_release)(HeapObject *object);
/// Atomically decrements the retain count of an object n times. If the retain
/// count reaches zero, the object is destroyed
SWIFT_RT_ENTRY_VISIBILITY
extern "C"
void swift_release_n(HeapObject *object, uint32_t n)
SWIFT_CC(RegisterPreservingCC);
SWIFT_RUNTIME_EXPORT
extern "C" void (*SWIFT_CC(RegisterPreservingCC)
_swift_release_n)(HeapObject *object, uint32_t n);
// Refcounting observation hooks for memory tools. Don't use these.
SWIFT_RUNTIME_EXPORT
extern "C" size_t swift_retainCount(HeapObject *object);
SWIFT_RUNTIME_EXPORT
extern "C" size_t swift_unownedRetainCount(HeapObject *object);
/// Is this pointer a non-null unique reference to an object
/// that uses Swift reference counting?
SWIFT_RUNTIME_EXPORT
extern "C" bool swift_isUniquelyReferencedNonObjC(const void *);
/// Is this non-null pointer a unique reference to an object
/// that uses Swift reference counting?
SWIFT_RUNTIME_EXPORT
extern "C" bool swift_isUniquelyReferencedNonObjC_nonNull(const void *);
/// Is this non-null pointer a reference to an object that uses Swift
/// reference counting and is either uniquely referenced or pinned?
SWIFT_RUNTIME_EXPORT
extern "C" bool swift_isUniquelyReferencedOrPinnedNonObjC_nonNull(const void *);
/// Is this non-null BridgeObject a unique reference to an object
/// that uses Swift reference counting?
SWIFT_RUNTIME_EXPORT
extern "C" bool swift_isUniquelyReferencedNonObjC_nonNull_bridgeObject(
uintptr_t bits);
/// Is this non-null BridgeObject a unique or pinned reference to an
/// object that uses Swift reference counting?
SWIFT_RUNTIME_EXPORT
extern "C" bool swift_isUniquelyReferencedOrPinnedNonObjC_nonNull_bridgeObject(
uintptr_t bits);
/// Is this native Swift pointer a non-null unique reference to
/// an object?
SWIFT_RUNTIME_EXPORT
extern "C" bool swift_isUniquelyReferenced_native(const struct HeapObject *);
/// Is this native Swift pointer a non-null unique or pinned reference
/// to an object?
SWIFT_RT_ENTRY_VISIBILITY
extern "C" bool swift_isUniquelyReferencedOrPinned_native(
const struct HeapObject *) SWIFT_CC(RegisterPreservingCC);
/// Is this non-null native Swift pointer a unique reference to
/// an object?
SWIFT_RT_ENTRY_VISIBILITY
extern "C" bool swift_isUniquelyReferenced_nonNull_native(
const struct HeapObject *) SWIFT_CC(RegisterPreservingCC);
/// Does this non-null native Swift pointer refer to an object that
/// is either uniquely referenced or pinned?
SWIFT_RT_ENTRY_VISIBILITY
extern "C" bool swift_isUniquelyReferencedOrPinned_nonNull_native(
const struct HeapObject *) SWIFT_CC(RegisterPreservingCC);
/// Deallocate the given memory.
///
/// It must have been returned by swift_allocObject and the strong reference
/// must have the RC_DEALLOCATING_FLAG flag set, but otherwise the object is
/// in an unknown state.
///
/// \param object - never null
/// \param allocatedSize - the allocated size of the object from the
/// program's perspective, i.e. the value
/// \param allocatedAlignMask - the alignment requirement that was passed
/// to allocObject
///
/// POSSIBILITIES: It may be useful to have a variant which
/// requires the object to have been fully zeroed from offsets
/// sizeof(SwiftHeapObject) to allocatedSize.
SWIFT_RT_ENTRY_VISIBILITY
extern "C" void swift_deallocObject(HeapObject *object, size_t allocatedSize,
size_t allocatedAlignMask)
SWIFT_CC(RegisterPreservingCC);
/// Deallocate the given memory.
///
/// It must have been returned by swift_allocObject, possibly used as an
/// Objective-C class instance, and the strong reference must have the
/// RC_DEALLOCATING_FLAG flag set, but otherwise the object is in an unknown
/// state.
///
/// \param object - never null
/// \param allocatedSize - the allocated size of the object from the
/// program's perspective, i.e. the value
/// \param allocatedAlignMask - the alignment requirement that was passed
/// to allocObject
///
/// POSSIBILITIES: It may be useful to have a variant which
/// requires the object to have been fully zeroed from offsets
/// sizeof(SwiftHeapObject) to allocatedSize.
SWIFT_RUNTIME_EXPORT
extern "C" void swift_deallocClassInstance(HeapObject *object,
size_t allocatedSize,
size_t allocatedAlignMask);
/// Deallocate the given memory after destroying instance variables.
///
/// Destroys instance variables in classes more derived than the given metatype.
///
/// It must have been returned by swift_allocObject, possibly used as an
/// Objective-C class instance, and the strong reference must be equal to 1.
///
/// \param object - may be null
/// \param type - most derived class whose instance variables do not need to
/// be destroyed
/// \param allocatedSize - the allocated size of the object from the
/// program's perspective, i.e. the value
/// \param allocatedAlignMask - the alignment requirement that was passed
/// to allocObject
SWIFT_RUNTIME_EXPORT
extern "C" void swift_deallocPartialClassInstance(HeapObject *object,
const HeapMetadata *type,
size_t allocatedSize,
size_t allocatedAlignMask);
/// Deallocate the given memory allocated by swift_allocBox; it was returned
/// by swift_allocBox but is otherwise in an unknown state. The given Metadata
/// pointer must be the same metadata pointer that was passed to swift_allocBox
/// when the memory was allocated.
SWIFT_RUNTIME_EXPORT
extern "C" void swift_deallocBox(HeapObject *object);
/// Project the value out of a box. `object` must have been allocated
/// using `swift_allocBox`, or by the compiler using a statically-emitted
/// box metadata object.
SWIFT_RUNTIME_EXPORT
extern "C" OpaqueValue *swift_projectBox(HeapObject *object);
/// RAII object that wraps a Swift heap object and releases it upon
/// destruction.
class SwiftRAII {
HeapObject *object;
public:
SwiftRAII(HeapObject *obj, bool AlreadyRetained) : object(obj) {
if (!AlreadyRetained)
swift_retain(obj);
}
~SwiftRAII() {
if (object)
swift_release(object);
}
SwiftRAII(const SwiftRAII &other) {
swift_retain(*other);
object = *other;
;
}
SwiftRAII(SwiftRAII &&other) : object(*other) {
other.object = nullptr;
}
SwiftRAII &operator=(const SwiftRAII &other) {
if (object)
swift_release(object);
swift_retain(*other);
object = *other;
return *this;
}
SwiftRAII &operator=(SwiftRAII &&other) {
if (object)
swift_release(object);
object = *other;
other.object = nullptr;
return *this;
}
HeapObject *operator *() const { return object; }
};
/*****************************************************************************/
/**************************** UNOWNED REFERENCES *****************************/
/*****************************************************************************/
/// An unowned reference in memory. This is ABI.
struct UnownedReference {
HeapObject *Value;
};
/// Increment the weak/unowned retain count.
SWIFT_RT_ENTRY_VISIBILITY
extern "C" void swift_unownedRetain(HeapObject *value)
SWIFT_CC(RegisterPreservingCC);
/// Decrement the weak/unowned retain count.
SWIFT_RT_ENTRY_VISIBILITY
extern "C" void swift_unownedRelease(HeapObject *value)
SWIFT_CC(RegisterPreservingCC);
/// Increment the weak/unowned retain count by n.
SWIFT_RT_ENTRY_VISIBILITY
extern "C" void swift_unownedRetain_n(HeapObject *value, int n)
SWIFT_CC(RegisterPreservingCC);
/// Decrement the weak/unowned retain count by n.
SWIFT_RT_ENTRY_VISIBILITY
extern "C" void swift_unownedRelease_n(HeapObject *value, int n)
SWIFT_CC(RegisterPreservingCC);
/// Increment the strong retain count of an object, aborting if it has
/// been deallocated.
SWIFT_RT_ENTRY_VISIBILITY
extern "C" void swift_unownedRetainStrong(HeapObject *value)
SWIFT_CC(RegisterPreservingCC);
/// Increment the strong retain count of an object which may have been
/// deallocated, aborting if it has been deallocated, and decrement its
/// weak/unowned reference count.
SWIFT_RT_ENTRY_VISIBILITY
extern "C" void swift_unownedRetainStrongAndRelease(HeapObject *value)
SWIFT_CC(RegisterPreservingCC);
/// Aborts if the object has been deallocated.
SWIFT_RUNTIME_EXPORT
extern "C" void swift_unownedCheck(HeapObject *value);
static inline void swift_unownedInit(UnownedReference *ref, HeapObject *value) {
ref->Value = value;
swift_unownedRetain(value);
}
static inline void swift_unownedAssign(UnownedReference *ref,
HeapObject *value) {
auto oldValue = ref->Value;
if (value != oldValue) {
swift_unownedRetain(value);
ref->Value = value;
swift_unownedRelease(oldValue);
}
}
static inline HeapObject *swift_unownedLoadStrong(UnownedReference *ref) {
auto value = ref->Value;
swift_unownedRetainStrong(value);
return value;
}
static inline void *swift_unownedTakeStrong(UnownedReference *ref) {
auto value = ref->Value;
swift_unownedRetainStrongAndRelease(value);
return value;
}
static inline void swift_unownedDestroy(UnownedReference *ref) {
swift_unownedRelease(ref->Value);
}
static inline void swift_unownedCopyInit(UnownedReference *dest,
UnownedReference *src) {
dest->Value = src->Value;
swift_unownedRetain(dest->Value);
}
static inline void swift_unownedTakeInit(UnownedReference *dest,
UnownedReference *src) {
dest->Value = src->Value;
}
static inline void swift_unownedCopyAssign(UnownedReference *dest,
UnownedReference *src) {
auto newValue = src->Value;
auto oldValue = dest->Value;
if (newValue != oldValue) {
dest->Value = newValue;
swift_unownedRetain(newValue);
swift_unownedRelease(oldValue);
}
}
static inline void swift_unownedTakeAssign(UnownedReference *dest,
UnownedReference *src) {
auto newValue = src->Value;
auto oldValue = dest->Value;
dest->Value = newValue;
swift_unownedRelease(oldValue);
}
/*****************************************************************************/
/****************************** WEAK REFERENCES ******************************/
/*****************************************************************************/
/// A weak reference value object. This is ABI.
struct WeakReference {
HeapObject *Value;
};
/// Initialize a weak reference.
///
/// \param ref - never null
/// \param value - can be null
SWIFT_RUNTIME_EXPORT
extern "C" void swift_weakInit(WeakReference *ref, HeapObject *value);
/// Assign a new value to a weak reference.
///
/// \param ref - never null
/// \param value - can be null
SWIFT_RUNTIME_EXPORT
extern "C" void swift_weakAssign(WeakReference *ref, HeapObject *value);
/// Load a value from a weak reference. If the current value is a
/// non-null object that has begun deallocation, returns null;
/// otherwise, retains the object before returning.
///
/// \param ref - never null
/// \return can be null
SWIFT_RUNTIME_EXPORT
extern "C" HeapObject *swift_weakLoadStrong(WeakReference *ref);
/// Load a value from a weak reference as if by swift_weakLoadStrong,
/// but leaving the reference in an uninitialized state.
///
/// \param ref - never null
/// \return can be null
SWIFT_RUNTIME_EXPORT
extern "C" HeapObject *swift_weakTakeStrong(WeakReference *ref);
/// Destroy a weak reference.
///
/// \param ref - never null, but can refer to a null object
SWIFT_RUNTIME_EXPORT
extern "C" void swift_weakDestroy(WeakReference *ref);
/// Copy initialize a weak reference.
///
/// \param dest - never null, but can refer to a null object
/// \param src - never null, but can refer to a null object
SWIFT_RUNTIME_EXPORT
extern "C" void swift_weakCopyInit(WeakReference *dest, WeakReference *src);
/// Take initialize a weak reference.
///
/// \param dest - never null, but can refer to a null object
/// \param src - never null, but can refer to a null object
SWIFT_RUNTIME_EXPORT
extern "C" void swift_weakTakeInit(WeakReference *dest, WeakReference *src);
/// Copy assign a weak reference.
///
/// \param dest - never null, but can refer to a null object
/// \param src - never null, but can refer to a null object
SWIFT_RUNTIME_EXPORT
extern "C" void swift_weakCopyAssign(WeakReference *dest, WeakReference *src);
/// Take assign a weak reference.
///
/// \param dest - never null, but can refer to a null object
/// \param src - never null, but can refer to a null object
SWIFT_RUNTIME_EXPORT
extern "C" void swift_weakTakeAssign(WeakReference *dest, WeakReference *src);
/*****************************************************************************/
/************************* OTHER REFERENCE-COUNTING **************************/
/*****************************************************************************/
SWIFT_RUNTIME_EXPORT
extern "C" void *swift_bridgeObjectRetain(void *value)
SWIFT_CC(DefaultCC);
/// Increment the strong retain count of a bridged object by n.
SWIFT_RUNTIME_EXPORT
extern "C" void *swift_bridgeObjectRetain_n(void *value, int n)
SWIFT_CC(DefaultCC);
/*****************************************************************************/
/************************ UNKNOWN REFERENCE-COUNTING *************************/
/*****************************************************************************/
#if SWIFT_OBJC_INTEROP
/// Increment the strong retain count of an object which might not be a native
/// Swift object.
SWIFT_RUNTIME_EXPORT
extern "C" void swift_unknownRetain(void *value)
SWIFT_CC(DefaultCC);
/// Increment the strong retain count of an object which might not be a native
/// Swift object by n.
SWIFT_RUNTIME_EXPORT
extern "C" void swift_unknownRetain_n(void *value, int n)
SWIFT_CC(DefaultCC);
#else
static inline void swift_unknownRetain(void *value)
SWIFT_CC(DefaultCC) {
swift_retain(static_cast<HeapObject *>(value));
}
static inline void swift_unknownRetain_n(void *value, int n)
SWIFT_CC(DefaultCC) {
swift_retain_n(static_cast<HeapObject *>(value), n);
}
#endif /* SWIFT_OBJC_INTEROP */
SWIFT_RUNTIME_EXPORT
extern "C" void swift_bridgeObjectRelease(void *value)
SWIFT_CC(DefaultCC);
/// Decrement the strong retain count of a bridged object by n.
SWIFT_RUNTIME_EXPORT
extern "C" void swift_bridgeObjectRelease_n(void *value, int n)
SWIFT_CC(DefaultCC);
#if SWIFT_OBJC_INTEROP
/// Decrement the strong retain count of an object which might not be a native
/// Swift object.
SWIFT_RUNTIME_EXPORT
extern "C" void swift_unknownRelease(void *value)
SWIFT_CC(DefaultCC);
/// Decrement the strong retain count of an object which might not be a native
/// Swift object by n.
SWIFT_RUNTIME_EXPORT
extern "C" void swift_unknownRelease_n(void *value, int n)
SWIFT_CC(DefaultCC);
#else
static inline void swift_unknownRelease(void *value)
SWIFT_CC(RegisterPreservingCC) {
swift_release(static_cast<HeapObject *>(value));
}
static inline void swift_unknownRelease_n(void *value, int n)
SWIFT_CC(RegisterPreservingCC) {
swift_release_n(static_cast<HeapObject *>(value), n);
}
#endif /* SWIFT_OBJC_INTEROP */
/*****************************************************************************/
/************************** UNKNOWN WEAK REFERENCES **************************/
/*****************************************************************************/
#if SWIFT_OBJC_INTEROP
/// Initialize a weak reference.
///
/// \param ref - never null
/// \param value - not necessarily a native Swift object; can be null
SWIFT_RUNTIME_EXPORT
extern "C" void swift_unknownWeakInit(WeakReference *ref, void *value);
#else
static inline void swift_unknownWeakInit(WeakReference *ref, void *value) {
swift_weakInit(ref, static_cast<HeapObject *>(value));
}
#endif /* SWIFT_OBJC_INTEROP */
#if SWIFT_OBJC_INTEROP
/// Assign a new value to a weak reference.
///
/// \param ref - never null
/// \param value - not necessarily a native Swift object; can be null
SWIFT_RUNTIME_EXPORT
extern "C" void swift_unknownWeakAssign(WeakReference *ref, void *value);
#else
static inline void swift_unknownWeakAssign(WeakReference *ref, void *value) {
swift_weakAssign(ref, static_cast<HeapObject *>(value));
}
#endif /* SWIFT_OBJC_INTEROP */
#if SWIFT_OBJC_INTEROP
/// Load a value from a weak reference, much like swift_weakLoadStrong
/// but without requiring the variable to refer to a native Swift object.
///
/// \param ref - never null
/// \return can be null
SWIFT_RUNTIME_EXPORT
extern "C" void *swift_unknownWeakLoadStrong(WeakReference *ref);
#else
static inline void swift_unknownWeakLoadStrong(WeakReference *ref) {
swift_weakLoadStrong(ref);
}
#endif /* SWIFT_OBJC_INTEROP */
#if SWIFT_OBJC_INTEROP
/// Load a value from a weak reference as if by
/// swift_unknownWeakLoadStrong, but leaving the reference in an
/// uninitialized state.
///
/// \param ref - never null
/// \return can be null
SWIFT_RUNTIME_EXPORT
extern "C" void *swift_unknownWeakTakeStrong(WeakReference *ref);
#else
static inline void swift_unknownWeakTakeStrong(WeakReference *ref) {
swift_weakTakeStrong(ref);
}
#endif /* SWIFT_OBJC_INTEROP */
#if SWIFT_OBJC_INTEROP
/// Destroy a weak reference variable that might not refer to a native
/// Swift object.
SWIFT_RUNTIME_EXPORT
extern "C" void swift_unknownWeakDestroy(WeakReference *object);
#else
static inline void swift_unknownWeakDestroy(WeakReference *object) {
swift_weakDestroy(object);
}
#endif /* SWIFT_OBJC_INTEROP */
#if SWIFT_OBJC_INTEROP
/// Copy-initialize a weak reference variable from one that might not
/// refer to a native Swift object.
SWIFT_RUNTIME_EXPORT
extern "C" void swift_unknownWeakCopyInit(WeakReference *dest,
WeakReference *src);
#else
static inline void swift_unknownWeakCopyInit(WeakReference *dest,
WeakReference *src) {
swift_weakCopyInit(dest, src);
}
#endif /* SWIFT_OBJC_INTEROP */
#if SWIFT_OBJC_INTEROP
/// Take-initialize a weak reference variable from one that might not
/// refer to a native Swift object.
SWIFT_RUNTIME_EXPORT
extern "C" void swift_unknownWeakTakeInit(WeakReference *dest,
WeakReference *src);
#else
static inline void swift_unknownWeakTakeInit(WeakReference *dest,
WeakReference *src) {
swift_weakTakeInit(dest, src);
}
#endif /* SWIFT_OBJC_INTEROP */
#if SWIFT_OBJC_INTEROP
/// Copy-assign a weak reference variable from another when either
/// or both variables might not refer to a native Swift object.
SWIFT_RUNTIME_EXPORT
extern "C" void swift_unknownWeakCopyAssign(WeakReference *dest,
WeakReference *src);
#else
static inline void swift_unknownWeakCopyAssign(WeakReference *dest,
WeakReference *src) {
swift_weakCopyAssign(dest, src);
}
#endif /* SWIFT_OBJC_INTEROP */
#if SWIFT_OBJC_INTEROP
/// Take-assign a weak reference variable from another when either
/// or both variables might not refer to a native Swift object.
SWIFT_RUNTIME_EXPORT
extern "C" void swift_unknownWeakTakeAssign(WeakReference *dest,
WeakReference *src);
#else
static inline void swift_unknownWeakTakeAssign(WeakReference *dest,
WeakReference *src) {
swift_weakTakeAssign(dest, src);
}
#endif /* SWIFT_OBJC_INTEROP */
/*****************************************************************************/
/************************ UNKNOWN UNOWNED REFERENCES *************************/
/*****************************************************************************/
#if SWIFT_OBJC_INTEROP
/// Initialize an unowned reference to an object with unknown reference
/// counting.
SWIFT_RUNTIME_EXPORT
extern "C" void swift_unknownUnownedInit(UnownedReference *ref, void *value);
#else
static inline void swift_unknownUnownedInit(UnownedReference *ref,
void *value) {
swift_unownedInit(ref, static_cast<HeapObject*>(value));
}
#endif /* SWIFT_OBJC_INTEROP */
#if SWIFT_OBJC_INTEROP
/// Assign to an unowned reference holding an object with unknown reference
/// counting.
SWIFT_RUNTIME_EXPORT
extern "C" void swift_unknownUnownedAssign(UnownedReference *ref, void *value);
#else
static inline void swift_unknownUnownedAssign(UnownedReference *ref,
void *value) {
swift_unownedAssign(ref, static_cast<HeapObject*>(value));
}
#endif /* SWIFT_OBJC_INTEROP */
#if SWIFT_OBJC_INTEROP
/// Load from an unowned reference to an object with unknown reference
/// counting.
SWIFT_RUNTIME_EXPORT
extern "C" void *swift_unknownUnownedLoadStrong(UnownedReference *ref);
#else
static inline void *swift_unknownUnownedLoadStrong(UnownedReference *ref) {
return swift_unownedLoadStrong(ref);
}
#endif /* SWIFT_OBJC_INTEROP */
#if SWIFT_OBJC_INTEROP
/// Take from an unowned reference to an object with unknown reference
/// counting.
SWIFT_RUNTIME_EXPORT
extern "C" void *swift_unknownUnownedTakeStrong(UnownedReference *ref);
#else
static inline void *swift_unknownUnownedTakeStrong(UnownedReference *ref) {
return swift_unownedTakeStrong(ref);
}
#endif /* SWIFT_OBJC_INTEROP */
#if SWIFT_OBJC_INTEROP
/// Destroy an unowned reference to an object with unknown reference counting.
SWIFT_RUNTIME_EXPORT
extern "C" void swift_unknownUnownedDestroy(UnownedReference *ref);
#else
static inline void swift_unknownUnownedDestroy(UnownedReference *ref) {
swift_unownedDestroy(ref);
}
#endif /* SWIFT_OBJC_INTEROP */
#if SWIFT_OBJC_INTEROP
/// Copy-initialize an unowned reference variable from one that might not
/// refer to a native Swift object.
SWIFT_RUNTIME_EXPORT
extern "C" void swift_unknownUnownedCopyInit(UnownedReference *dest,
UnownedReference *src);
#else
static inline void swift_unknownUnownedCopyInit(UnownedReference *dest,
UnownedReference *src) {
swift_unownedCopyInit(dest, src);
}
#endif /* SWIFT_OBJC_INTEROP */
#if SWIFT_OBJC_INTEROP
/// Take-initialize an unowned reference variable from one that might not
/// refer to a native Swift object.
SWIFT_RUNTIME_EXPORT
extern "C" void swift_unknownUnownedTakeInit(UnownedReference *dest,
UnownedReference *src);
#else
static inline void swift_unknownUnownedTakeInit(UnownedReference *dest,
UnownedReference *src) {
swift_unownedTakeInit(dest, src);
}
#endif /* SWIFT_OBJC_INTEROP */
#if SWIFT_OBJC_INTEROP
/// Copy-assign an unowned reference variable from another when either
/// or both variables might not refer to a native Swift object.
SWIFT_RUNTIME_EXPORT
extern "C" void swift_unknownUnownedCopyAssign(UnownedReference *dest,
UnownedReference *src);
#else
static inline void swift_unknownUnownedCopyAssign(UnownedReference *dest,
UnownedReference *src) {
swift_unownedCopyAssign(dest, src);
}
#endif /* SWIFT_OBJC_INTEROP */
#if SWIFT_OBJC_INTEROP
/// Take-assign an unowned reference variable from another when either
/// or both variables might not refer to a native Swift object.
SWIFT_RUNTIME_EXPORT
extern "C" void swift_unknownUnownedTakeAssign(UnownedReference *dest,
UnownedReference *src);
#else
static inline void swift_unknownUnownedTakeAssign(UnownedReference *dest,
UnownedReference *src) {
swift_unownedTakeAssign(dest, src);
}
#endif /* SWIFT_OBJC_INTEROP */
} // end namespace swift
#endif /* SWIFT_RUNTIME_ALLOC_H */