Files
swift-mirror/stdlib/core/IntegerArithmetic.swift.gyb

157 lines
5.3 KiB
Swift

//===--- IntegerArithmeticType.swift.gyb ---------------------*- swift -*--===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
%# Ignore the following admonition; it applies to the resulting .swift file only
// Automatically Generated From IntegerArithmeticType.swift.gyb. Do Not
// Edit Directly!
%{
integerBinaryOps = [
(x[:-1], x[-1], x[:-1].capitalize(), 'a result')
for x in 'add+ subtract- multiply* divide/'.split()
] + [ ('remainder', '%', 'Divide', 'the remainder') ]
}%
/// This protocol is an implementation detail of `IntegerArithmeticType`; do
/// not use it directly.
///
/// Its requirements are inherited by `IntegerArithmeticType` and thus must
/// be satisfied by types conforming to that protocol.
public protocol _IntegerArithmeticType {
% for name,_,Action,result in integerBinaryOps:
/// ${Action} `lhs` and `rhs`, returning ${result} and a `Bool` that is
/// true iff the operation caused an arithmetic overflow.
class func ${name}WithOverflow(lhs: Self, _ rhs: Self) -> (Self, overflow: Bool)
% end
}
/// The common requirements for types that support integer arithmetic.
public protocol IntegerArithmeticType : _IntegerArithmeticType, Comparable {
// Checked arithmetic functions. Specific implementations in
// FixedPoint.swift.gyb support static checking for integer types.
% for name,op,Action,result in integerBinaryOps:
/// ${Action} `lhs` and `rhs`, returning ${result} and trapping in case of
/// arithmetic overflow (except in -Ounchecked builds).
func ${op} (lhs: Self, rhs: Self) -> Self
% end
/// Explicitly convert to `IntMax`, trapping on overflow (except in
/// -Ounchecked builds).
func toIntMax() -> IntMax
}
% for name,op,Action,result in integerBinaryOps:
/// ${Action} `lhs` and `rhs`, returning ${result} and trapping in case of
/// arithmetic overflow (except in -Ounchecked builds).
@transparent
public func ${op} <T: _IntegerArithmeticType>(lhs: T, rhs: T) -> T {
return _overflowChecked(T.${name}WithOverflow(lhs, rhs))
}
/// ${name} `lhs` and `rhs`, silently discarding any overflow.
@transparent
public func &${op} <T: _IntegerArithmeticType>(lhs: T, rhs: T) -> T {
return T.${name}WithOverflow(lhs, rhs).0
}
/// ${name} `lhs` and `rhs` and store the result in `lhs`, trapping in
/// case of arithmetic overflow (except in -Ounchecked builds).
@transparent
public func ${op}= <T: _IntegerArithmeticType>(inout lhs: T, rhs: T) {
lhs = lhs ${op} rhs
}
% end
//===--- SignedNumberType -------------------------------------------------===//
// A numeric type that supports abs(x), +x and -x
//===----------------------------------------------------------------------===//
/// This protocol is an implementation detail of `SignedNumberType`; do
/// not use it directly.
///
/// Its requirements are inherited by `SignedNumberType` and thus must
/// be satisfied by types conforming to that protocol.
public protocol _SignedNumberType : Comparable, IntegerLiteralConvertible {
/// Return the difference between `lhs` and `rhs`.
func - (lhs: Self, rhs: Self) -> Self
}
// SignedNumberType itself contains only operator requirements having
// default implementations on the base protocol.
/// Instances of conforming types can be subtracted, arithmetically
/// negated, and initialized from `0`.
///
/// Axioms:
///
/// - `x - 0 == x`
/// - `-x == 0 - x`
/// - `-(-x) == x`
public protocol SignedNumberType : _SignedNumberType {
/// Return the result of negating `x`.
prefix func - (x: Self) -> Self
// Do not use this operator directly; call abs(x) instead
func ~> (_:Self,_:(_Abs, ())) -> Self
}
// Unary negation in terms of subtraction. This is a default
// implementation; models of SignedNumberType can provide their own
// implementations.
@transparent
public prefix func - <T : _SignedNumberType>(x: T) -> T {
return 0 - x
}
// Unary +
@transparent
public prefix func + <T: _SignedNumberType>(x: T) -> T {
return x
}
//===--- abs(x) -----------------------------------------------------------===//
public struct _Abs {}
internal func _abs<Args>(args: Args) -> (_Abs, Args) {
return (_Abs(), args)
}
// Do not use this operator directly; call abs(x) instead
@transparent
public func ~> <T : _SignedNumberType>(x:T,_:(_Abs, ())) -> T {
return x < 0 ? -x : x
}
// FIXME: should this be folded into SignedNumberType?
/// A type that supports an "absolute value" function.
public protocol AbsoluteValuable : SignedNumberType {
/// Returns the absolute value of `x`
class func abs(x: Self) -> Self
}
// Do not use this operator directly; call abs(x) instead
@transparent
public func ~> <T : AbsoluteValuable>(x:T,_:(_Abs, ())) -> T {
return T.abs(x)
}
/// Return the absolute value of `x`.
///
/// Concrete instances of `SignedNumberType` can specialize this
/// function by conforming to `AbsoluteValuable`.
@transparent
public func abs<T : SignedNumberType>(x: T) -> T {
return x~>_abs()
}
// ${'Local Variables'}:
// eval: (read-only-mode 1)
// End: