Files
swift-mirror/include/swift/SILOptimizer/Utils/Generics.h
Erik Eckstein 4017570de7 Generic Specializer: Use getResilienceExpansion() throughout ReabstractionInfo
It must be consistent, otherwise the specialized function types may not match for calls in functions with different resilience expansions.

Fixes an assertion crash in the generic specializer.

rdar://problem/57844964
2019-12-13 11:15:38 +01:00

357 lines
13 KiB
C++

//===--- Generics.h - Utilities for transforming generics -------*- C++ -*-===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This contains utilities for transforming generics.
//
//===----------------------------------------------------------------------===//
#ifndef SWIFT_SIL_GENERICS_H
#define SWIFT_SIL_GENERICS_H
#include "swift/AST/SubstitutionMap.h"
#include "swift/SIL/SILFunction.h"
#include "swift/SIL/SILInstruction.h"
#include "swift/SILOptimizer/Utils/InstOptUtils.h"
#include "llvm/ADT/SmallBitVector.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
namespace swift {
class FunctionSignaturePartialSpecializer;
class SILOptFunctionBuilder;
namespace OptRemark {
class Emitter;
} // namespace OptRemark
/// Tries to specialize an \p Apply of a generic function. It can be a full
/// apply site or a partial apply.
/// Replaced and now dead instructions are returned in \p DeadApplies.
/// New created functions, like the specialized callee and thunks, are returned
/// in \p NewFunctions.
///
/// This is the top-level entry point for specializing an existing call site.
void trySpecializeApplyOfGeneric(
SILOptFunctionBuilder &FunctionBuilder,
ApplySite Apply, DeadInstructionSet &DeadApplies,
llvm::SmallVectorImpl<SILFunction *> &NewFunctions,
OptRemark::Emitter &ORE);
/// Helper class to describe re-abstraction of function parameters done during
/// specialization.
///
/// Specifically, it contains information which formal parameters and returns
/// are changed from indirect values to direct values.
class ReabstractionInfo {
/// A 1-bit means that this argument (= either indirect return value or
/// parameter) is converted from indirect to direct.
SmallBitVector Conversions;
/// For each bit set in Conversions, there is a bit set in TrivialArgs if the
/// argument has a trivial type.
SmallBitVector TrivialArgs;
/// If set, indirect to direct conversions should be performed by the generic
/// specializer.
bool ConvertIndirectToDirect;
/// The first NumResults bits in Conversions refer to formal indirect
/// out-parameters.
unsigned NumFormalIndirectResults;
/// The function type after applying the substitutions used to call the
/// specialized function.
CanSILFunctionType SubstitutedType;
/// The function type after applying the re-abstractions on the
/// SubstitutedType.
CanSILFunctionType SpecializedType;
/// The generic environment to be used by the specialization.
GenericEnvironment *SpecializedGenericEnv;
/// The generic signature of the specialization.
/// It is nullptr if the specialization is not polymorphic.
GenericSignature SpecializedGenericSig;
// Set of substitutions from callee's invocation before
// any transformations performed by the generic specializer.
//
// Maps callee's generic parameters to caller's archetypes.
SubstitutionMap CalleeParamSubMap;
// Set of substitutions to be used to invoke a specialized function.
//
// Maps generic parameters of the specialized callee function to caller's
// archetypes.
SubstitutionMap CallerParamSubMap;
// Replaces archetypes of the original callee with archetypes
// or concrete types, if they were made concrete) of the specialized
// callee.
SubstitutionMap ClonerParamSubMap;
// Reference to the original generic non-specialized callee function.
SILFunction *Callee;
// The module the specialization is created in.
ModuleDecl *TargetModule = nullptr;
bool isWholeModule = false;
// The apply site which invokes the generic function.
ApplySite Apply;
// Set if a specialized function has unbound generic parameters.
bool HasUnboundGenericParams;
// Substitutions to be used for creating a new function type
// for the specialized function.
//
// Maps original callee's generic parameters to specialized callee's
// generic parameters.
// It uses interface types.
SubstitutionMap CallerInterfaceSubs;
// Is the generated specialization going to be serialized?
IsSerialized_t Serialized;
unsigned param2ArgIndex(unsigned ParamIdx) const {
return ParamIdx + NumFormalIndirectResults;
}
// Create a new substituted type with the updated signature.
CanSILFunctionType createSubstitutedType(SILFunction *OrigF,
SubstitutionMap SubstMap,
bool HasUnboundGenericParams);
void createSubstitutedAndSpecializedTypes();
bool prepareAndCheck(ApplySite Apply, SILFunction *Callee,
SubstitutionMap ParamSubs,
OptRemark::Emitter *ORE = nullptr);
void performFullSpecializationPreparation(SILFunction *Callee,
SubstitutionMap ParamSubs);
void performPartialSpecializationPreparation(SILFunction *Caller,
SILFunction *Callee,
SubstitutionMap ParamSubs);
void finishPartialSpecializationPreparation(
FunctionSignaturePartialSpecializer &FSPS);
ReabstractionInfo() {}
public:
/// Constructs the ReabstractionInfo for generic function \p Callee with
/// substitutions \p ParamSubs.
/// If specialization is not possible getSpecializedType() will return an
/// invalid type.
ReabstractionInfo(ModuleDecl *targetModule,
bool isModuleWholeModule,
ApplySite Apply, SILFunction *Callee,
SubstitutionMap ParamSubs,
IsSerialized_t Serialized,
bool ConvertIndirectToDirect = true,
OptRemark::Emitter *ORE = nullptr);
/// Constructs the ReabstractionInfo for generic function \p Callee with
/// a specialization signature.
ReabstractionInfo(ModuleDecl *targetModule, bool isModuleWholeModule,
SILFunction *Callee, GenericSignature SpecializedSig);
IsSerialized_t isSerialized() const {
return Serialized;
}
TypeExpansionContext getResilienceExpansion() const {
auto resilience = (Serialized ? ResilienceExpansion::Minimal
: ResilienceExpansion::Maximal);
return TypeExpansionContext(resilience, TargetModule, isWholeModule);
}
/// Returns true if the \p ParamIdx'th (non-result) formal parameter is
/// converted from indirect to direct.
bool isParamConverted(unsigned ParamIdx) const {
return ConvertIndirectToDirect && isArgConverted(param2ArgIndex(ParamIdx));
}
/// Returns true if the \p ResultIdx'th formal result is converted from
/// indirect to direct.
bool isFormalResultConverted(unsigned ResultIdx) const {
assert(ResultIdx < NumFormalIndirectResults);
return ConvertIndirectToDirect && Conversions.test(ResultIdx);
}
/// Gets the total number of original function arguments.
unsigned getNumArguments() const { return Conversions.size(); }
/// Returns true if the \p ArgIdx'th argument is converted from an
/// indirect
/// result or parameter to a direct result or parameter.
bool isArgConverted(unsigned ArgIdx) const {
return Conversions.test(ArgIdx);
}
/// Returns true if there are any conversions from indirect to direct values.
bool hasConversions() const { return Conversions.any(); }
/// Remove the arguments of a partial apply, leaving the arguments for the
/// partial apply result function.
void prunePartialApplyArgs(unsigned numPartialApplyArgs) {
assert(numPartialApplyArgs <= SubstitutedType->getNumParameters());
assert(numPartialApplyArgs <= Conversions.size());
Conversions.resize(Conversions.size() - numPartialApplyArgs);
}
/// Returns the index of the first argument of an apply site, which may be
/// > 0 in case of a partial_apply.
unsigned getIndexOfFirstArg(ApplySite Apply) const {
unsigned numArgs = Apply.getNumArguments();
assert(numArgs == Conversions.size() ||
(numArgs < Conversions.size() && isa<PartialApplyInst>(Apply)));
return Conversions.size() - numArgs;
}
/// Get the function type after applying the substitutions to the original
/// generic function.
CanSILFunctionType getSubstitutedType() const { return SubstitutedType; }
/// Get the function type after applying the re-abstractions on the
/// substituted type. Returns an invalid type if specialization is not
/// possible.
CanSILFunctionType getSpecializedType() const { return SpecializedType; }
GenericEnvironment *getSpecializedGenericEnvironment() const {
return SpecializedGenericEnv;
}
GenericSignature getSpecializedGenericSignature() const {
return SpecializedGenericSig;
}
SubstitutionMap getCallerParamSubstitutionMap() const {
return CallerParamSubMap;
}
SubstitutionMap getClonerParamSubstitutionMap() const {
return ClonerParamSubMap;
}
SubstitutionMap getCalleeParamSubstitutionMap() const {
return CalleeParamSubMap;
}
/// Create a specialized function type for a specific substituted type \p
/// SubstFTy by applying the re-abstractions.
CanSILFunctionType createSpecializedType(CanSILFunctionType SubstFTy,
SILModule &M) const;
SILFunction *getNonSpecializedFunction() const { return Callee; }
/// Map type into a context of the specialized function.
Type mapTypeIntoContext(Type type) const;
/// Map SIL type into a context of the specialized function.
SILType mapTypeIntoContext(SILType type) const;
SILModule &getModule() const { return Callee->getModule(); }
/// Returns true if generic specialization is possible.
bool canBeSpecialized() const;
/// Returns true if it is a full generic specialization.
bool isFullSpecialization() const;
/// Returns true if it is a partial generic specialization.
bool isPartialSpecialization() const;
/// Returns true if a given apply can be specialized.
static bool canBeSpecialized(ApplySite Apply, SILFunction *Callee,
SubstitutionMap ParamSubs);
/// Returns the apply site for the current generic specialization.
ApplySite getApply() const {
return Apply;
}
void verify() const;
};
/// Helper class for specializing a generic function given a list of
/// substitutions.
class GenericFuncSpecializer {
SILOptFunctionBuilder &FuncBuilder;
SILModule &M;
SILFunction *GenericFunc;
SubstitutionMap ParamSubs;
const ReabstractionInfo &ReInfo;
SubstitutionMap ContextSubs;
std::string ClonedName;
public:
GenericFuncSpecializer(SILOptFunctionBuilder &FuncBuilder,
SILFunction *GenericFunc,
SubstitutionMap ParamSubs,
const ReabstractionInfo &ReInfo);
/// If we already have this specialization, reuse it.
SILFunction *lookupSpecialization();
/// Return a newly created specialized function.
SILFunction *tryCreateSpecialization();
/// Try to specialize GenericFunc given a list of ParamSubs.
/// Returns either a new or existing specialized function, or nullptr.
SILFunction *trySpecialization() {
if (!ReInfo.getSpecializedType())
return nullptr;
SILFunction *SpecializedF = lookupSpecialization();
if (!SpecializedF)
SpecializedF = tryCreateSpecialization();
return SpecializedF;
}
StringRef getClonedName() {
return ClonedName;
}
};
// =============================================================================
// Prespecialized symbol lookup.
// =============================================================================
/// Checks if a given mangled name could be a name of a known
/// prespecialization for -Onone support.
bool isKnownPrespecialization(StringRef SpecName);
/// Checks if all OnoneSupport pre-specializations are included in the module
/// as public functions.
///
/// Issues errors for all missing functions.
void checkCompletenessOfPrespecializations(SILModule &M);
/// Create a new apply based on an old one, but with a different
/// function being applied.
ApplySite replaceWithSpecializedFunction(ApplySite AI, SILFunction *NewF,
const ReabstractionInfo &ReInfo);
/// Returns a SILFunction for the symbol specified by FunctioName if it is
/// visible to the current SILModule. This is used to link call sites to
/// externally defined specialization and should only be used when the function
/// body is not required for further optimization or inlining (-Onone).
SILFunction *lookupPrespecializedSymbol(SILModule &M, StringRef FunctionName);
} // end namespace swift
#endif