Files
swift-mirror/lib/AST/Pattern.cpp
Doug Gregor 200f2340d9 [Macros] Be deliberate about walking macro arguments vs. expansions
Provide ASTWalker with a customization point to specify whether to
check macro arguments (which are type checked but never emitted), the
macro expansion (which is the result of applying the macro and is
actually emitted into the source), or both. Provide answers for the
~115 different ASTWalker visitors throughout the code base.

Fixes rdar://104042945, which concerns checking of effects in
macro arguments---which we shouldn't do.
2023-02-28 17:48:23 -08:00

615 lines
19 KiB
C++

//===--- Pattern.cpp - Swift Language Pattern-Matching ASTs ---------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements the Pattern class and subclasses.
//
//===----------------------------------------------------------------------===//
#include "swift/AST/Pattern.h"
#include "swift/AST/ASTContext.h"
#include "swift/AST/ASTWalker.h"
#include "swift/AST/Expr.h"
#include "swift/AST/GenericEnvironment.h"
#include "swift/AST/TypeLoc.h"
#include "swift/AST/TypeRepr.h"
#include "swift/Basic/Statistic.h"
#include "llvm/ADT/APFloat.h"
#include "llvm/Support/raw_ostream.h"
using namespace swift;
#define PATTERN(Id, _) \
static_assert(IsTriviallyDestructible<Id##Pattern>::value, \
"Patterns are BumpPtrAllocated; the d'tor is never called");
#include "swift/AST/PatternNodes.def"
/// Diagnostic printing of PatternKinds.
llvm::raw_ostream &swift::operator<<(llvm::raw_ostream &OS, PatternKind kind) {
switch (kind) {
case PatternKind::Paren:
return OS << "parenthesized pattern";
case PatternKind::Tuple:
return OS << "tuple pattern";
case PatternKind::Named:
return OS << "pattern variable binding";
case PatternKind::Any:
return OS << "'_' pattern";
case PatternKind::Typed:
return OS << "pattern type annotation";
case PatternKind::Is:
return OS << "prefix 'is' pattern";
case PatternKind::Expr:
return OS << "expression pattern";
case PatternKind::Binding:
return OS << "'var' binding pattern";
case PatternKind::EnumElement:
return OS << "enum case matching pattern";
case PatternKind::OptionalSome:
return OS << "optional .Some matching pattern";
case PatternKind::Bool:
return OS << "bool matching pattern";
}
llvm_unreachable("bad PatternKind");
}
StringRef Pattern::getKindName(PatternKind K) {
switch (K) {
#define PATTERN(Id, Parent) case PatternKind::Id: return #Id;
#include "swift/AST/PatternNodes.def"
}
llvm_unreachable("bad PatternKind");
}
// Metaprogram to verify that every concrete class implements
// a 'static bool classof(const Pattern*)'.
template <bool fn(const Pattern*)> struct CheckClassOfPattern {
static const bool IsImplemented = true;
};
template <> struct CheckClassOfPattern<Pattern::classof> {
static const bool IsImplemented = false;
};
#define PATTERN(ID, PARENT) \
static_assert(CheckClassOfPattern<ID##Pattern::classof>::IsImplemented, \
#ID "Pattern is missing classof(const Pattern*)");
#include "swift/AST/PatternNodes.def"
// Metaprogram to verify that every concrete class implements
// 'SourceRange getSourceRange()'.
typedef const char (&TwoChars)[2];
template<typename Class>
inline char checkSourceRangeType(SourceRange (Class::*)() const);
inline TwoChars checkSourceRangeType(SourceRange (Pattern::*)() const);
/// getSourceRange - Return the full source range of the pattern.
SourceRange Pattern::getSourceRange() const {
switch (getKind()) {
#define PATTERN(ID, PARENT) \
case PatternKind::ID: \
static_assert(sizeof(checkSourceRangeType(&ID##Pattern::getSourceRange)) == 1, \
#ID "Pattern is missing getSourceRange()"); \
return cast<ID##Pattern>(this)->getSourceRange();
#include "swift/AST/PatternNodes.def"
}
llvm_unreachable("pattern type not handled!");
}
void Pattern::setDelayedInterfaceType(Type interfaceTy, DeclContext *dc) {
assert(interfaceTy->hasTypeParameter() && "Not an interface type");
Ty = interfaceTy;
ASTContext &ctx = interfaceTy->getASTContext();
ctx.DelayedPatternContexts[this] = dc;
Bits.Pattern.hasInterfaceType = true;
}
Type Pattern::getType() const {
assert(hasType());
// If this pattern has an interface type, map it into the context type.
if (Bits.Pattern.hasInterfaceType) {
ASTContext &ctx = Ty->getASTContext();
// Retrieve the generic environment to use for the mapping.
auto found = ctx.DelayedPatternContexts.find(this);
assert(found != ctx.DelayedPatternContexts.end());
auto dc = found->second;
if (auto genericEnv = dc->getGenericEnvironmentOfContext()) {
ctx.DelayedPatternContexts.erase(this);
Ty = genericEnv->mapTypeIntoContext(Ty);
const_cast<Pattern*>(this)->Bits.Pattern.hasInterfaceType = false;
}
}
return Ty;
}
/// getLoc - Return the caret location of the pattern.
SourceLoc Pattern::getLoc() const {
switch (getKind()) {
#define PATTERN(ID, PARENT) \
case PatternKind::ID: \
if (&Pattern::getLoc != &ID##Pattern::getLoc) \
return cast<ID##Pattern>(this)->getLoc(); \
break;
#include "swift/AST/PatternNodes.def"
}
return getStartLoc();
}
void Pattern::collectVariables(SmallVectorImpl<VarDecl *> &variables) const {
forEachVariable([&](VarDecl *VD) { variables.push_back(VD); });
}
VarDecl *Pattern::getSingleVar() const {
auto pattern = getSemanticsProvidingPattern();
if (auto named = dyn_cast<NamedPattern>(pattern))
return named->getDecl();
return nullptr;
}
namespace {
class WalkToVarDecls : public ASTWalker {
const std::function<void(VarDecl*)> &fn;
public:
WalkToVarDecls(const std::function<void(VarDecl*)> &fn)
: fn(fn) {}
/// Walk everything that's available; there shouldn't be macro expansions
/// that matter anyway.
MacroWalking getMacroWalkingBehavior() const override {
return MacroWalking::ArgumentsAndExpansion;
}
PostWalkResult<Pattern *> walkToPatternPost(Pattern *P) override {
// Handle vars.
if (auto *Named = dyn_cast<NamedPattern>(P))
fn(Named->getDecl());
return Action::Continue(P);
}
// Only walk into an expression insofar as it doesn't open a new scope -
// that is, don't walk into a closure body.
PreWalkResult<Expr *> walkToExprPre(Expr *E) override {
if (isa<ClosureExpr>(E)) {
return Action::SkipChildren(E);
}
return Action::Continue(E);
}
// Don't walk into anything else.
PreWalkResult<Stmt *> walkToStmtPre(Stmt *S) override {
return Action::SkipChildren(S);
}
PreWalkAction walkToTypeReprPre(TypeRepr *T) override {
return Action::SkipChildren();
}
PreWalkAction walkToParameterListPre(ParameterList *PL) override {
return Action::SkipChildren();
}
PreWalkAction walkToDeclPre(Decl *D) override {
return Action::SkipChildren();
}
};
} // end anonymous namespace
/// apply the specified function to all variables referenced in this
/// pattern.
void Pattern::forEachVariable(llvm::function_ref<void(VarDecl *)> fn) const {
switch (getKind()) {
case PatternKind::Any:
case PatternKind::Bool:
return;
case PatternKind::Is:
if (auto SP = cast<IsPattern>(this)->getSubPattern())
SP->forEachVariable(fn);
return;
case PatternKind::Named:
fn(cast<NamedPattern>(this)->getDecl());
return;
case PatternKind::Paren:
case PatternKind::Typed:
case PatternKind::Binding:
return getSemanticsProvidingPattern()->forEachVariable(fn);
case PatternKind::Tuple:
for (auto elt : cast<TuplePattern>(this)->getElements())
elt.getPattern()->forEachVariable(fn);
return;
case PatternKind::EnumElement:
if (auto SP = cast<EnumElementPattern>(this)->getSubPattern())
SP->forEachVariable(fn);
return;
case PatternKind::OptionalSome:
cast<OptionalSomePattern>(this)->getSubPattern()->forEachVariable(fn);
return;
case PatternKind::Expr:
// An ExprPattern only exists before sema has resolved a refutable pattern
// into a concrete pattern. We have to use an AST Walker to find the
// VarDecls buried down inside of it.
const_cast<Pattern*>(this)->walk(WalkToVarDecls(fn));
return;
}
}
/// apply the specified function to all pattern nodes recursively in
/// this pattern. This is a pre-order traversal.
void Pattern::forEachNode(llvm::function_ref<void(Pattern*)> f) {
f(this);
switch (getKind()) {
// Leaf patterns have no recursion.
case PatternKind::Any:
case PatternKind::Named:
case PatternKind::Expr:// FIXME: expr nodes are not modeled right in general.
case PatternKind::Bool:
return;
case PatternKind::Is:
if (auto SP = cast<IsPattern>(this)->getSubPattern())
SP->forEachNode(f);
return;
case PatternKind::Paren:
return cast<ParenPattern>(this)->getSubPattern()->forEachNode(f);
case PatternKind::Typed:
return cast<TypedPattern>(this)->getSubPattern()->forEachNode(f);
case PatternKind::Binding:
return cast<BindingPattern>(this)->getSubPattern()->forEachNode(f);
case PatternKind::Tuple:
for (auto elt : cast<TuplePattern>(this)->getElements())
elt.getPattern()->forEachNode(f);
return;
case PatternKind::EnumElement: {
auto *OP = cast<EnumElementPattern>(this);
if (OP->hasSubPattern())
OP->getSubPattern()->forEachNode(f);
return;
}
case PatternKind::OptionalSome:
cast<OptionalSomePattern>(this)->getSubPattern()->forEachNode(f);
return;
}
}
bool Pattern::hasStorage() const {
bool HasStorage = false;
forEachVariable([&](VarDecl *VD) {
if (VD->hasStorage())
HasStorage = true;
});
return HasStorage;
}
bool Pattern::hasAnyMutableBindings() const {
auto HasMutable = false;
forEachVariable([&](VarDecl *VD) {
if (!VD->isLet())
HasMutable = true;
});
return HasMutable;
}
OptionalSomePattern *OptionalSomePattern::create(ASTContext &ctx,
Pattern *subPattern,
SourceLoc questionLoc) {
return new (ctx) OptionalSomePattern(ctx, subPattern, questionLoc);
}
OptionalSomePattern *
OptionalSomePattern::createImplicit(ASTContext &ctx, Pattern *subPattern,
SourceLoc questionLoc) {
auto *P = OptionalSomePattern::create(ctx, subPattern, questionLoc);
P->setImplicit();
return P;
}
EnumElementDecl *OptionalSomePattern::getElementDecl() const {
return Ctx.getOptionalSomeDecl();
}
/// Return true if this is a non-resolved ExprPattern which is syntactically
/// irrefutable.
static bool isIrrefutableExprPattern(const ExprPattern *EP) {
// If the pattern has a registered match expression, it's
// a type-checked ExprPattern.
if (EP->getMatchExpr()) return false;
auto expr = EP->getSubExpr();
while (true) {
// Drill into parens.
if (auto parens = dyn_cast<ParenExpr>(expr)) {
expr = parens->getSubExpr();
continue;
}
// A '_' is an untranslated AnyPattern.
if (isa<DiscardAssignmentExpr>(expr))
return true;
// Everything else is non-exhaustive.
return false;
}
}
/// Return true if this pattern (or a subpattern) is refutable.
bool Pattern::isRefutablePattern() const {
bool foundRefutablePattern = false;
const_cast<Pattern*>(this)->forEachNode([&](Pattern *Node) {
// If this is an always matching 'is' pattern, then it isn't refutable.
if (auto *is = dyn_cast<IsPattern>(Node))
if (is->getCastKind() == CheckedCastKind::Coercion ||
is->getCastKind() == CheckedCastKind::BridgingCoercion)
return;
// If this is an ExprPattern that isn't resolved yet, do some simple
// syntactic checks.
// FIXME: This is unsound, since type checking will turn other more
// complicated patterns into non-refutable forms.
if (auto *ep = dyn_cast<ExprPattern>(Node))
if (isIrrefutableExprPattern(ep))
return;
switch (Node->getKind()) {
#define PATTERN(ID, PARENT) case PatternKind::ID: break;
#define REFUTABLE_PATTERN(ID, PARENT) \
case PatternKind::ID: foundRefutablePattern = true; break;
#include "swift/AST/PatternNodes.def"
}
});
return foundRefutablePattern;
}
/// Find the name directly bound by this pattern. When used as a
/// tuple element in a function signature, such names become part of
/// the type.
Identifier Pattern::getBoundName() const {
if (auto *NP = dyn_cast<NamedPattern>(getSemanticsProvidingPattern()))
return NP->getBoundName();
return Identifier();
}
Identifier NamedPattern::getBoundName() const {
return Var->getName();
}
/// Allocate a new pattern that matches a tuple.
TuplePattern *TuplePattern::create(ASTContext &C, SourceLoc lp,
ArrayRef<TuplePatternElt> elts,
SourceLoc rp) {
#ifndef NDEBUG
if (elts.size() == 1)
assert(!elts[0].getLabel().empty());
#endif
unsigned n = elts.size();
void *buffer = C.Allocate(totalSizeToAlloc<TuplePatternElt>(n),
alignof(TuplePattern));
TuplePattern *pattern = ::new (buffer) TuplePattern(lp, n, rp);
std::uninitialized_copy(elts.begin(), elts.end(),
pattern->getTrailingObjects<TuplePatternElt>());
return pattern;
}
Pattern *TuplePattern::createSimple(ASTContext &C, SourceLoc lp,
ArrayRef<TuplePatternElt> elements,
SourceLoc rp) {
assert(lp.isValid() == rp.isValid());
if (elements.size() == 1 &&
elements[0].getLabel().empty()) {
auto &first = const_cast<TuplePatternElt&>(elements.front());
return new (C) ParenPattern(lp, first.getPattern(), rp);
}
return create(C, lp, elements, rp);
}
SourceRange TuplePattern::getSourceRange() const {
if (LPLoc.isValid())
return { LPLoc, RPLoc };
auto Fields = getElements();
if (Fields.empty())
return {};
return { Fields.front().getPattern()->getStartLoc(),
Fields.back().getPattern()->getEndLoc() };
}
TypedPattern::TypedPattern(Pattern *pattern, TypeRepr *tr)
: Pattern(PatternKind::Typed), SubPattern(pattern), PatTypeRepr(tr) {
Bits.TypedPattern.IsPropagatedType = false;
}
SourceLoc TypedPattern::getLoc() const {
if (SubPattern->isImplicit() && PatTypeRepr)
return PatTypeRepr->getSourceRange().Start;
return SubPattern->getLoc();
}
SourceRange TypedPattern::getSourceRange() const {
if (isImplicit() || isPropagatedType()) {
// If a TypedPattern is implicit, then its type is definitely implicit, so
// we should ignore its location. On the other hand, the sub-pattern can
// be explicit or implicit.
return SubPattern->getSourceRange();
}
if (!PatTypeRepr)
return SourceRange();
if (SubPattern->isImplicit())
return PatTypeRepr->getSourceRange();
return { SubPattern->getSourceRange().Start,
PatTypeRepr->getSourceRange().End };
}
IsPattern::IsPattern(SourceLoc IsLoc, TypeExpr *CastTy, Pattern *SubPattern,
CheckedCastKind Kind)
: Pattern(PatternKind::Is), IsLoc(IsLoc), SubPattern(SubPattern),
CastKind(Kind), CastType(CastTy) {
assert(IsLoc.isValid() == CastTy->getLoc().isValid());
}
IsPattern *IsPattern::createImplicit(ASTContext &Ctx, Type castTy,
Pattern *SubPattern,
CheckedCastKind Kind) {
assert(castTy);
auto *CastTE = TypeExpr::createImplicit(castTy, Ctx);
auto *ip = new (Ctx) IsPattern(SourceLoc(), CastTE, SubPattern, Kind);
ip->setImplicit();
return ip;
}
SourceRange IsPattern::getSourceRange() const {
SourceLoc beginLoc = SubPattern ? SubPattern->getSourceRange().Start : IsLoc;
SourceLoc endLoc = (isImplicit() ? beginLoc : CastType->getEndLoc());
return {beginLoc, endLoc};
}
Type IsPattern::getCastType() const { return CastType->getInstanceType(); }
void IsPattern::setCastType(Type type) {
assert(type);
CastType->setType(MetatypeType::get(type));
}
TypeRepr *IsPattern::getCastTypeRepr() const { return CastType->getTypeRepr(); }
/// Construct an ExprPattern.
ExprPattern::ExprPattern(Expr *e, bool isResolved, Expr *matchExpr,
VarDecl *matchVar)
: Pattern(PatternKind::Expr), SubExprAndIsResolved(e, isResolved),
MatchExpr(matchExpr), MatchVar(matchVar) {
assert(!matchExpr || e->isImplicit() == matchExpr->isImplicit());
}
SourceLoc EnumElementPattern::getStartLoc() const {
return (ParentType && !ParentType->isImplicit())
? ParentType->getSourceRange().Start
: DotLoc.isValid() ? DotLoc : NameLoc.getBaseNameLoc();
}
SourceLoc EnumElementPattern::getEndLoc() const {
if (SubPattern && SubPattern->getSourceRange().isValid()) {
return SubPattern->getSourceRange().End;
}
return NameLoc.getEndLoc();
}
TypeRepr *EnumElementPattern::getParentTypeRepr() const {
if (!ParentType)
return nullptr;
return ParentType->getTypeRepr();
}
Type EnumElementPattern::getParentType() const {
if (!ParentType)
return Type();
return ParentType->getInstanceType();
}
void EnumElementPattern::setParentType(Type type) {
assert(type);
if (ParentType) {
ParentType->setType(MetatypeType::get(type));
} else {
ParentType = TypeExpr::createImplicit(type, type->getASTContext());
}
}
SourceLoc ExprPattern::getLoc() const {
return getSubExpr()->getLoc();
}
SourceRange ExprPattern::getSourceRange() const {
return getSubExpr()->getSourceRange();
}
// See swift/Basic/Statistic.h for declaration: this enables tracing Patterns, is
// defined here to avoid too much layering violation / circular linkage
// dependency.
struct PatternTraceFormatter : public UnifiedStatsReporter::TraceFormatter {
void traceName(const void *Entity, raw_ostream &OS) const override {
if (!Entity)
return;
const Pattern *P = static_cast<const Pattern *>(Entity);
if (const NamedPattern *NP = dyn_cast<NamedPattern>(P)) {
OS << NP->getBoundName();
}
}
void traceLoc(const void *Entity, SourceManager *SM,
clang::SourceManager *CSM, raw_ostream &OS) const override {
if (!Entity)
return;
const Pattern *P = static_cast<const Pattern *>(Entity);
P->getSourceRange().print(OS, *SM, false);
}
};
static PatternTraceFormatter TF;
template<>
const UnifiedStatsReporter::TraceFormatter*
FrontendStatsTracer::getTraceFormatter<const Pattern *>() {
return &TF;
}
ContextualPattern ContextualPattern::forPatternBindingDecl(
PatternBindingDecl *pbd, unsigned index) {
return ContextualPattern(
pbd->getPattern(index), /*isTopLevel=*/true, pbd, index);
}
DeclContext *ContextualPattern::getDeclContext() const {
if (auto pbd = getPatternBindingDecl())
return pbd->getDeclContext();
return declOrContext.get<DeclContext *>();
}
PatternBindingDecl *ContextualPattern::getPatternBindingDecl() const {
return declOrContext.dyn_cast<PatternBindingDecl *>();
}
bool ContextualPattern::allowsInference() const {
if (auto pbd = getPatternBindingDecl()) {
return pbd->isInitialized(index) ||
pbd->isDefaultInitializableViaPropertyWrapper(index);
}
return true;
}
void swift::simple_display(llvm::raw_ostream &out,
const ContextualPattern &pattern) {
out << "(pattern @ " << pattern.getPattern() << ")";
}