Files
swift-mirror/lib/SIL/Utils/Dominance.cpp
Nate Chandler ee3cbde8fe [SIL] computeDominatedBoundaryBlocks on non-OSSA.
The algorithm requires no critical edges, but that doesn't mean
require ownership.  Remove the assert to allow the utility to be called
from code where the caller has manually split edges.

In the fullness of time, there should no passes should introduce
critical edges.
2023-06-05 08:11:28 -07:00

167 lines
4.9 KiB
C++

//===--- Dominance.cpp - SIL basic block dominance analysis ---------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#include "swift/SIL/SILFunction.h"
#include "swift/SIL/SILBasicBlock.h"
#include "swift/SIL/SILArgument.h"
#include "swift/SIL/Dominance.h"
#include "llvm/Support/GenericDomTreeConstruction.h"
using namespace swift;
template class llvm::DominatorTreeBase<SILBasicBlock, false>;
template class llvm::DominatorTreeBase<SILBasicBlock, true>;
template class llvm::DomTreeNodeBase<SILBasicBlock>;
namespace llvm {
namespace DomTreeBuilder {
template void Calculate<SILDomTree>(SILDomTree &DT);
template void Calculate<SILPostDomTree>(SILPostDomTree &DT);
} // namespace DomTreeBuilder
} // namespace llvm
/// Compute the immediate-dominators map.
DominanceInfo::DominanceInfo(SILFunction *F)
: DominatorTreeBase() {
assert(!F->isExternalDeclaration() &&
"Make sure the function is a definition and not a declaration.");
recalculate(*F);
}
bool DominanceInfo::properlyDominates(SILInstruction *a, SILInstruction *b) {
auto aBlock = a->getParent(), bBlock = b->getParent();
// If the blocks are different, it's as easy as whether A's block
// dominates B's block.
if (aBlock != bBlock)
return properlyDominates(a->getParent(), b->getParent());
// Otherwise, they're in the same block, and we just need to check
// whether B comes after A. This is a non-strict computation.
auto aIter = a->getIterator();
auto bIter = b->getIterator();
auto fIter = aBlock->begin();
while (bIter != fIter) {
--bIter;
if (aIter == bIter)
return true;
}
return false;
}
/// Does value A properly dominate instruction B?
bool DominanceInfo::properlyDominates(SILValue a, SILInstruction *b) {
if (auto *Inst = a->getDefiningInstruction()) {
return properlyDominates(Inst, b);
}
if (auto *Arg = dyn_cast<SILArgument>(a)) {
return dominates(Arg->getParent(), b->getParent());
}
return false;
}
void DominanceInfo::verify() const {
// Recompute.
auto *F = getRoot()->getParent();
DominanceInfo OtherDT(F);
// And compare.
if (errorOccurredOnComparison(OtherDT)) {
llvm::errs() << "DominatorTree is not up to date!\nComputed:\n";
print(llvm::errs());
llvm::errs() << "\nActual:\n";
OtherDT.print(llvm::errs());
abort();
}
}
/// Compute the immediate-post-dominators map.
PostDominanceInfo::PostDominanceInfo(SILFunction *F)
: PostDominatorTreeBase() {
assert(!F->isExternalDeclaration() &&
"Cannot construct a post dominator tree for a declaration");
recalculate(*F);
}
bool
PostDominanceInfo::
properlyDominates(SILInstruction *I1, SILInstruction *I2) {
SILBasicBlock *BB1 = I1->getParent(), *BB2 = I2->getParent();
// If the blocks are different, it's as easy as whether BB1 post dominates
// BB2.
if (BB1 != BB2)
return properlyDominates(BB1, BB2);
// Otherwise, they're in the same block, and we just need to check
// whether A comes after B.
for (auto II = I1->getIterator(), IE = BB1->end(); II != IE; ++II) {
if (&*II == I2) {
return false;
}
}
return true;
}
bool PostDominanceInfo::properlyDominates(SILValue A, SILInstruction *B) {
if (auto *Inst = A->getDefiningInstruction()) {
return properlyDominates(Inst, B);
}
if (auto *Arg = dyn_cast<SILArgument>(A)) {
return dominates(Arg->getParent(), B->getParent());
}
return false;
}
void PostDominanceInfo::verify() const {
// Recompute.
//
// Even though at the SIL level we have "one" return function, we can have
// multiple exits provided by no-return functions.
auto *F = (*root_begin())->getParent();
PostDominanceInfo OtherDT(F);
// And compare.
if (errorOccurredOnComparison(OtherDT)) {
llvm::errs() << "PostDominatorTree is not up to date!\nComputed:\n";
print(llvm::errs());
llvm::errs() << "\nActual:\n";
OtherDT.print(llvm::errs());
abort();
}
}
void swift::computeDominatedBoundaryBlocks(
SILBasicBlock *root, DominanceInfo *domTree,
SmallVectorImpl<SILBasicBlock *> &boundary) {
assert(boundary.empty());
DominanceOrder domOrder(root, domTree);
while (SILBasicBlock *block = domOrder.getNext()) {
DominanceInfoNode *domNode = domTree->getNode(block);
if (!domNode->isLeaf()) {
domOrder.pushChildren(block);
continue;
}
if (block->getNumSuccessors() == 0) {
boundary.push_back(block);
continue;
}
auto *succ = block->getSingleSuccessorBlock();
if (!domTree->properlyDominates(root, succ)) {
boundary.push_back(block);
}
}
}