mirror of
https://github.com/apple/swift.git
synced 2025-12-21 12:14:44 +01:00
1340 lines
49 KiB
C++
1340 lines
49 KiB
C++
//===--- SILCombinerApplyVisitors.cpp -------------------------------------===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See https://swift.org/LICENSE.txt for license information
|
|
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "sil-combine"
|
|
#include "SILCombiner.h"
|
|
#include "swift/AST/SubstitutionMap.h"
|
|
#include "swift/SIL/DynamicCasts.h"
|
|
#include "swift/SIL/PatternMatch.h"
|
|
#include "swift/SIL/SILBuilder.h"
|
|
#include "swift/SIL/SILVisitor.h"
|
|
#include "swift/SIL/DebugUtils.h"
|
|
#include "swift/SILOptimizer/Analysis/AliasAnalysis.h"
|
|
#include "swift/SILOptimizer/Analysis/ARCAnalysis.h"
|
|
#include "swift/SILOptimizer/Analysis/CFG.h"
|
|
#include "swift/SILOptimizer/Analysis/ValueTracking.h"
|
|
#include "swift/SILOptimizer/Utils/Local.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
|
|
using namespace swift;
|
|
using namespace swift::PatternMatch;
|
|
|
|
/// Remove pointless reabstraction thunk closures.
|
|
/// partial_apply %reabstraction_thunk_typeAtoB(
|
|
/// partial_apply %reabstraction_thunk_typeBtoA %closure_typeB))
|
|
/// ->
|
|
/// %closure_typeB
|
|
static bool foldInverseReabstractionThunks(PartialApplyInst *PAI,
|
|
SILCombiner *Combiner) {
|
|
auto PAIArg = isPartialApplyOfReabstractionThunk(PAI);
|
|
if (!PAIArg)
|
|
return false;
|
|
|
|
auto *PAI2 = dyn_cast<PartialApplyInst>(PAIArg);
|
|
if (!PAI2)
|
|
return false;
|
|
|
|
if (!hasOneNonDebugUse(PAI2))
|
|
return false;
|
|
|
|
auto PAI2Arg = isPartialApplyOfReabstractionThunk(PAI2);
|
|
if (!PAI2Arg)
|
|
return false;
|
|
|
|
// The types must match.
|
|
if (PAI->getType() != PAI2->getArgument(0)->getType())
|
|
return false;
|
|
|
|
// Replace the partial_apply(partial_apply(X)) by X and remove the
|
|
// partial_applies.
|
|
|
|
Combiner->replaceInstUsesWith(*PAI, PAI2->getArgument(0));
|
|
Combiner->eraseInstFromFunction(*PAI);
|
|
assert(onlyHaveDebugUses(PAI2) && "Should not have any uses");
|
|
Combiner->eraseInstFromFunction(*PAI2);
|
|
|
|
return true;
|
|
}
|
|
|
|
SILInstruction *SILCombiner::visitPartialApplyInst(PartialApplyInst *PAI) {
|
|
// partial_apply without any substitutions or arguments is just a
|
|
// thin_to_thick_function.
|
|
if (!PAI->hasSubstitutions() && (PAI->getNumArguments() == 0))
|
|
return Builder.createThinToThickFunction(PAI->getLoc(), PAI->getCallee(),
|
|
PAI->getType());
|
|
|
|
// partial_apply %reabstraction_thunk_typeAtoB(
|
|
// partial_apply %reabstraction_thunk_typeBtoA %closure_typeB))
|
|
// -> %closure_typeB
|
|
if (foldInverseReabstractionThunks(PAI, this))
|
|
return nullptr;
|
|
|
|
tryOptimizeApplyOfPartialApply(PAI);
|
|
|
|
// Try to delete dead closures.
|
|
tryDeleteDeadClosure(
|
|
PAI, InstModCallbacks(
|
|
[this](SILInstruction *DeadInst) {
|
|
eraseInstFromFunction(*DeadInst);
|
|
},
|
|
[this](SILInstruction *NewInst) { Worklist.add(NewInst); }));
|
|
return nullptr;
|
|
}
|
|
|
|
// Helper class performing the apply{partial_apply(x,y)}(z) -> apply(z,x,y)
|
|
// peephole.
|
|
class PartialApplyCombiner {
|
|
// True if temporaries are not created yet.
|
|
bool isFirstTime = true;
|
|
|
|
// partial_apply which is being processed.
|
|
PartialApplyInst *PAI;
|
|
|
|
// Temporaries created as copies of alloc_stack arguments of
|
|
// the partial_apply.
|
|
SmallVector<SILValue, 8> Tmps;
|
|
|
|
// Mapping from the original argument of partial_apply to
|
|
// the temporary containing its copy.
|
|
llvm::DenseMap<SILValue, SILValue> ArgToTmp;
|
|
|
|
// Set of lifetime endpoints for this partial_apply.
|
|
//
|
|
// Used to find the last uses of partial_apply, which is need to insert
|
|
// releases/destroys of temporaries as early as possible.
|
|
ValueLifetimeAnalysis::Frontier PAFrontier;
|
|
|
|
SILBuilder &Builder;
|
|
|
|
SILCombiner *SilCombiner;
|
|
|
|
bool processSingleApply(FullApplySite AI);
|
|
bool allocateTemporaries();
|
|
void deallocateTemporaries();
|
|
void releaseTemporaries();
|
|
|
|
public:
|
|
PartialApplyCombiner(PartialApplyInst *PAI, SILBuilder &Builder,
|
|
SILCombiner *SilCombiner)
|
|
: isFirstTime(true), PAI(PAI), Builder(Builder),
|
|
SilCombiner(SilCombiner) {}
|
|
SILInstruction *combine();
|
|
};
|
|
|
|
/// Returns true on success.
|
|
bool PartialApplyCombiner::allocateTemporaries() {
|
|
// Copy the original arguments of the partial_apply into
|
|
// newly created temporaries and use these temporaries instead of
|
|
// the original arguments afterwards.
|
|
// This is done to "extend" the life-time of original partial_apply
|
|
// arguments, as they may be destroyed/deallocated before the last
|
|
// use by one of the apply instructions.
|
|
// TODO:
|
|
// Copy arguments of the partial_apply into new temporaries
|
|
// only if the lifetime of arguments ends before their uses
|
|
// by apply instructions.
|
|
bool needsReleases = false;
|
|
CanSILFunctionType PAITy =
|
|
PAI->getCallee()->getType().getAs<SILFunctionType>();
|
|
|
|
// Emit a destroy value for each captured closure argument.
|
|
ArrayRef<SILParameterInfo> Params = PAITy->getParameters();
|
|
auto Args = PAI->getArguments();
|
|
unsigned Delta = Params.size() - Args.size();
|
|
|
|
llvm::SmallVector<std::pair<SILValue, unsigned>, 8> ArgsToHandle;
|
|
for (unsigned AI = 0, AE = Args.size(); AI != AE; ++AI) {
|
|
SILValue Arg = Args[AI];
|
|
SILParameterInfo Param = Params[AI + Delta];
|
|
if (Param.isIndirectMutating())
|
|
continue;
|
|
// Create a temporary and copy the argument into it, if:
|
|
// - the argument stems from an alloc_stack
|
|
// - the argument is consumed by the callee and is indirect
|
|
// (e.g. it is an @in argument)
|
|
if (isa<AllocStackInst>(Arg)
|
|
|| (Param.isConsumed()
|
|
&& PAI->getSubstCalleeConv().isSILIndirect(Param))) {
|
|
// If the temporary is non-trivial, we need to release it later.
|
|
if (!Arg->getType().isTrivial(PAI->getModule()))
|
|
needsReleases = true;
|
|
ArgsToHandle.push_back(std::make_pair(Arg, AI));
|
|
}
|
|
}
|
|
|
|
if (needsReleases) {
|
|
// Compute the set of endpoints, which will be used to insert releases of
|
|
// temporaries. This may fail if the frontier is located on a critical edge
|
|
// which we may not split (no CFG changes in SILCombine).
|
|
ValueLifetimeAnalysis VLA(PAI);
|
|
if (!VLA.computeFrontier(PAFrontier, ValueLifetimeAnalysis::DontModifyCFG))
|
|
return false;
|
|
}
|
|
|
|
for (auto ArgWithIdx : ArgsToHandle) {
|
|
SILValue Arg = ArgWithIdx.first;
|
|
Builder.setInsertionPoint(PAI->getFunction()->begin()->begin());
|
|
// Create a new temporary at the beginning of a function.
|
|
auto *Tmp = Builder.createAllocStack(PAI->getLoc(), Arg->getType(),
|
|
{/*Constant*/ true, ArgWithIdx.second});
|
|
Builder.setInsertionPoint(PAI);
|
|
// Copy argument into this temporary.
|
|
Builder.createCopyAddr(PAI->getLoc(), Arg, Tmp,
|
|
IsTake_t::IsNotTake,
|
|
IsInitialization_t::IsInitialization);
|
|
|
|
Tmps.push_back(Tmp);
|
|
ArgToTmp.insert(std::make_pair(Arg, Tmp));
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// Emit dealloc_stack for all temporaries.
|
|
void PartialApplyCombiner::deallocateTemporaries() {
|
|
// Insert dealloc_stack instructions at all function exit points.
|
|
for (SILBasicBlock &BB : *PAI->getFunction()) {
|
|
TermInst *Term = BB.getTerminator();
|
|
if (!Term->isFunctionExiting())
|
|
continue;
|
|
|
|
for (auto Op : Tmps) {
|
|
Builder.setInsertionPoint(Term);
|
|
Builder.createDeallocStack(PAI->getLoc(), Op);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Emit code to release/destroy temporaries.
|
|
void PartialApplyCombiner::releaseTemporaries() {
|
|
// Insert releases and destroy_addrs as early as possible,
|
|
// because we don't want to keep objects alive longer than
|
|
// its really needed.
|
|
for (auto Op : Tmps) {
|
|
auto TmpType = Op->getType().getObjectType();
|
|
if (TmpType.isTrivial(PAI->getModule()))
|
|
continue;
|
|
for (auto *EndPoint : PAFrontier) {
|
|
Builder.setInsertionPoint(EndPoint);
|
|
if (!TmpType.isAddressOnly(PAI->getModule())) {
|
|
auto *Load = Builder.createLoad(PAI->getLoc(), Op,
|
|
LoadOwnershipQualifier::Unqualified);
|
|
Builder.createReleaseValue(PAI->getLoc(), Load, Builder.getDefaultAtomicity());
|
|
} else {
|
|
Builder.createDestroyAddr(PAI->getLoc(), Op);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Process an apply instruction which uses a partial_apply
|
|
/// as its callee.
|
|
/// Returns true on success.
|
|
bool PartialApplyCombiner::processSingleApply(FullApplySite AI) {
|
|
Builder.setInsertionPoint(AI.getInstruction());
|
|
Builder.setCurrentDebugScope(AI.getDebugScope());
|
|
|
|
// Prepare the args.
|
|
SmallVector<SILValue, 8> Args;
|
|
// First the ApplyInst args.
|
|
for (auto Op : AI.getArguments())
|
|
Args.push_back(Op);
|
|
|
|
SILInstruction *InsertionPoint = &*Builder.getInsertionPoint();
|
|
// Next, the partial apply args.
|
|
|
|
// Pre-process partial_apply arguments only once, lazily.
|
|
if (isFirstTime) {
|
|
isFirstTime = false;
|
|
if (!allocateTemporaries())
|
|
return false;
|
|
}
|
|
|
|
// Now, copy over the partial apply args.
|
|
for (auto Op : PAI->getArguments()) {
|
|
auto Arg = Op;
|
|
// If there is new temporary for this argument, use it instead.
|
|
if (ArgToTmp.count(Arg)) {
|
|
Op = ArgToTmp.lookup(Arg);
|
|
}
|
|
Args.push_back(Op);
|
|
}
|
|
|
|
Builder.setInsertionPoint(InsertionPoint);
|
|
Builder.setCurrentDebugScope(AI.getDebugScope());
|
|
|
|
// The thunk that implements the partial apply calls the closure function
|
|
// that expects all arguments to be consumed by the function. However, the
|
|
// captured arguments are not arguments of *this* apply, so they are not
|
|
// pre-incremented. When we combine the partial_apply and this apply into
|
|
// a new apply we need to retain all of the closure non-address type
|
|
// arguments.
|
|
auto ParamInfo = PAI->getSubstCalleeType()->getParameters();
|
|
auto PartialApplyArgs = PAI->getArguments();
|
|
// Set of arguments that need to be released after each invocation.
|
|
SmallVector<SILValue, 8> ToBeReleasedArgs;
|
|
for (unsigned i = 0, e = PartialApplyArgs.size(); i < e; ++i) {
|
|
SILValue Arg = PartialApplyArgs[i];
|
|
if (!Arg->getType().isAddress()) {
|
|
// Retain the argument as the callee may consume it.
|
|
Arg = Builder.emitCopyValueOperation(PAI->getLoc(), Arg);
|
|
// For non consumed parameters (e.g. guaranteed), we also need to
|
|
// insert releases after each apply instruction that we create.
|
|
if (!ParamInfo[ParamInfo.size() - PartialApplyArgs.size() + i].
|
|
isConsumed())
|
|
ToBeReleasedArgs.push_back(Arg);
|
|
}
|
|
}
|
|
|
|
auto Callee = PAI->getCallee();
|
|
auto FnType = PAI->getSubstCalleeSILType();
|
|
SILType ResultTy = PAI->getSubstCalleeConv().getSILResultType();
|
|
SubstitutionList Subs = PAI->getSubstitutions();
|
|
|
|
// The partial_apply might be substituting in an open existential type.
|
|
Builder.addOpenedArchetypeOperands(PAI);
|
|
|
|
FullApplySite NAI;
|
|
if (auto *TAI = dyn_cast<TryApplyInst>(AI))
|
|
NAI =
|
|
Builder.createTryApply(AI.getLoc(), Callee, FnType, Subs, Args,
|
|
TAI->getNormalBB(), TAI->getErrorBB());
|
|
else
|
|
NAI =
|
|
Builder.createApply(AI.getLoc(), Callee, FnType, ResultTy, Subs, Args,
|
|
cast<ApplyInst>(AI)->isNonThrowing());
|
|
|
|
// We also need to release the partial_apply instruction itself because it
|
|
// is consumed by the apply_instruction.
|
|
if (auto *TAI = dyn_cast<TryApplyInst>(AI)) {
|
|
Builder.setInsertionPoint(TAI->getNormalBB()->begin());
|
|
for (auto Arg : ToBeReleasedArgs) {
|
|
Builder.emitDestroyValueOperation(PAI->getLoc(), Arg);
|
|
}
|
|
Builder.createStrongRelease(AI.getLoc(), PAI, Builder.getDefaultAtomicity());
|
|
Builder.setInsertionPoint(TAI->getErrorBB()->begin());
|
|
// Release the non-consumed parameters.
|
|
for (auto Arg : ToBeReleasedArgs) {
|
|
Builder.emitDestroyValueOperation(PAI->getLoc(), Arg);
|
|
}
|
|
Builder.createStrongRelease(AI.getLoc(), PAI, Builder.getDefaultAtomicity());
|
|
Builder.setInsertionPoint(AI.getInstruction());
|
|
} else {
|
|
// Release the non-consumed parameters.
|
|
for (auto Arg : ToBeReleasedArgs) {
|
|
Builder.emitDestroyValueOperation(PAI->getLoc(), Arg);
|
|
}
|
|
Builder.createStrongRelease(AI.getLoc(), PAI, Builder.getDefaultAtomicity());
|
|
}
|
|
|
|
SilCombiner->replaceInstUsesWith(*AI.getInstruction(), NAI.getInstruction());
|
|
SilCombiner->eraseInstFromFunction(*AI.getInstruction());
|
|
return true;
|
|
}
|
|
|
|
/// Perform the apply{partial_apply(x,y)}(z) -> apply(z,x,y) peephole
|
|
/// by iterating over all uses of the partial_apply and searching
|
|
/// for the pattern to transform.
|
|
SILInstruction *PartialApplyCombiner::combine() {
|
|
// We need to model @unowned_inner_pointer better before we can do the
|
|
// peephole here.
|
|
for (auto R : PAI->getSubstCalleeType()->getResults())
|
|
if (R.getConvention() == ResultConvention::UnownedInnerPointer)
|
|
return nullptr;
|
|
|
|
// Iterate over all uses of the partial_apply
|
|
// and look for applies that use it as a callee.
|
|
for (auto UI = PAI->use_begin(), UE = PAI->use_end(); UI != UE; ) {
|
|
auto Use = *UI;
|
|
++UI;
|
|
auto User = Use->getUser();
|
|
// If this use of a partial_apply is not
|
|
// an apply which uses it as a callee, bail.
|
|
auto AI = FullApplySite::isa(User);
|
|
if (!AI)
|
|
continue;
|
|
|
|
if (AI.getCallee() != PAI)
|
|
continue;
|
|
|
|
// We cannot handle generic apply yet. Bail.
|
|
if (AI.hasSubstitutions())
|
|
continue;
|
|
|
|
if (!processSingleApply(AI))
|
|
return nullptr;
|
|
}
|
|
|
|
// release/destroy and deallocate introduced temporaries.
|
|
if (!Tmps.empty()) {
|
|
releaseTemporaries();
|
|
deallocateTemporaries();
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
/// Iterate over all uses of a given partial_apply and check
|
|
/// if any of those uses are apply instructions. Try to
|
|
/// combine those applies with this partial_apply.
|
|
SILInstruction *
|
|
SILCombiner::tryOptimizeApplyOfPartialApply(PartialApplyInst *PAI) {
|
|
|
|
PartialApplyCombiner PACombiner(PAI, Builder, this);
|
|
return PACombiner.combine();
|
|
}
|
|
|
|
SILInstruction *
|
|
SILCombiner::optimizeApplyOfConvertFunctionInst(FullApplySite AI,
|
|
ConvertFunctionInst *CFI) {
|
|
// We only handle simplification of static function references. If we don't
|
|
// have one, bail.
|
|
FunctionRefInst *FRI = dyn_cast<FunctionRefInst>(CFI->getOperand());
|
|
if (!FRI)
|
|
return nullptr;
|
|
|
|
// Grab our relevant callee types...
|
|
CanSILFunctionType SubstCalleeTy = AI.getSubstCalleeType();
|
|
auto ConvertCalleeTy =
|
|
CFI->getOperand()->getType().castTo<SILFunctionType>();
|
|
|
|
// ... and make sure they have no unsubstituted generics. If they do, bail.
|
|
if (SubstCalleeTy->hasArchetype() || ConvertCalleeTy->hasArchetype())
|
|
return nullptr;
|
|
|
|
// Ok, we can now perform our transformation. Grab AI's operands and the
|
|
// relevant types from the ConvertFunction function type and AI.
|
|
Builder.setCurrentDebugScope(AI.getDebugScope());
|
|
OperandValueArrayRef Ops = AI.getArgumentsWithoutIndirectResults();
|
|
SILFunctionConventions substConventions(SubstCalleeTy, FRI->getModule());
|
|
SILFunctionConventions convertConventions(ConvertCalleeTy, FRI->getModule());
|
|
auto oldOpTypes = substConventions.getParameterSILTypes();
|
|
auto newOpTypes = convertConventions.getParameterSILTypes();
|
|
|
|
assert(Ops.size() == SubstCalleeTy->getNumParameters()
|
|
&& "Ops and op types must have same size.");
|
|
assert(Ops.size() == ConvertCalleeTy->getNumParameters()
|
|
&& "Ops and op types must have same size.");
|
|
|
|
llvm::SmallVector<SILValue, 8> Args;
|
|
auto newOpI = newOpTypes.begin();
|
|
auto oldOpI = oldOpTypes.begin();
|
|
for (unsigned i = 0, e = Ops.size(); i != e; ++i, ++newOpI, ++oldOpI) {
|
|
SILValue Op = Ops[i];
|
|
SILType OldOpType = *oldOpI;
|
|
SILType NewOpType = *newOpI;
|
|
|
|
// Convert function takes refs to refs, address to addresses, and leaves
|
|
// other types alone.
|
|
if (OldOpType.isAddress()) {
|
|
assert(NewOpType.isAddress() && "Addresses should map to addresses.");
|
|
auto UAC = Builder.createUncheckedAddrCast(AI.getLoc(), Op, NewOpType);
|
|
Args.push_back(UAC);
|
|
} else if (OldOpType.isHeapObjectReferenceType()) {
|
|
assert(NewOpType.isHeapObjectReferenceType() &&
|
|
"refs should map to refs.");
|
|
auto URC = Builder.createUncheckedRefCast(AI.getLoc(), Op, NewOpType);
|
|
Args.push_back(URC);
|
|
} else {
|
|
Args.push_back(Op);
|
|
}
|
|
}
|
|
|
|
SILType CCSILTy = SILType::getPrimitiveObjectType(ConvertCalleeTy);
|
|
// Create the new apply inst.
|
|
SILInstruction *NAI;
|
|
if (auto *TAI = dyn_cast<TryApplyInst>(AI))
|
|
NAI = Builder.createTryApply(AI.getLoc(), FRI, CCSILTy,
|
|
SubstitutionList(), Args,
|
|
TAI->getNormalBB(), TAI->getErrorBB());
|
|
else
|
|
NAI = Builder.createApply(
|
|
AI.getLoc(), FRI, CCSILTy, convertConventions.getSILResultType(),
|
|
SubstitutionList(), Args, cast<ApplyInst>(AI)->isNonThrowing());
|
|
return NAI;
|
|
}
|
|
|
|
bool
|
|
SILCombiner::recursivelyCollectARCUsers(UserListTy &Uses, ValueBase *Value) {
|
|
// FIXME: We could probably optimize this case too
|
|
if (auto *AI = dyn_cast<ApplyInst>(Value))
|
|
if (AI->hasIndirectResults())
|
|
return false;
|
|
|
|
for (auto *Use : Value->getUses()) {
|
|
SILInstruction *Inst = Use->getUser();
|
|
if (isa<RefCountingInst>(Inst) ||
|
|
isa<DebugValueInst>(Inst)) {
|
|
Uses.push_back(Inst);
|
|
continue;
|
|
}
|
|
if (isa<TupleExtractInst>(Inst) ||
|
|
isa<StructExtractInst>(Inst) ||
|
|
isa<PointerToAddressInst>(Inst)) {
|
|
Uses.push_back(Inst);
|
|
if (recursivelyCollectARCUsers(Uses, Inst))
|
|
continue;
|
|
}
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool SILCombiner::eraseApply(FullApplySite FAS, const UserListTy &Users) {
|
|
|
|
// Compute the places where we have to insert release-instructions for the
|
|
// owned arguments. This must not be done before the result of the
|
|
// apply is destroyed. Therefore we compute the lifetime of the apply-result.
|
|
ValueLifetimeAnalysis VLA(FAS.getInstruction(), Users);
|
|
ValueLifetimeAnalysis::Frontier Frontier;
|
|
if (Users.empty()) {
|
|
// If the call does not have any ARC-uses or if there is no return value at
|
|
// all, we insert the argument release instructions right before the call.
|
|
Frontier.push_back(FAS.getInstruction());
|
|
} else {
|
|
if (!VLA.computeFrontier(Frontier, ValueLifetimeAnalysis::DontModifyCFG))
|
|
return false;
|
|
}
|
|
|
|
// Release and destroy any owned or in-arguments.
|
|
auto FuncType = FAS.getOrigCalleeType();
|
|
assert(FuncType->getParameters().size() == FAS.getNumArguments() &&
|
|
"mismatching number of arguments");
|
|
for (SILInstruction *FrontierInst : Frontier) {
|
|
Builder.setInsertionPoint(FrontierInst);
|
|
for (int i = 0, e = FAS.getNumArguments(); i < e; ++i) {
|
|
SILParameterInfo PI = FuncType->getParameters()[i];
|
|
auto Arg = FAS.getArgument(i);
|
|
switch (PI.getConvention()) {
|
|
case ParameterConvention::Indirect_In:
|
|
Builder.createDestroyAddr(FAS.getLoc(), Arg);
|
|
break;
|
|
case ParameterConvention::Direct_Owned:
|
|
Builder.createReleaseValue(FAS.getLoc(), Arg, Builder.getDefaultAtomicity());
|
|
break;
|
|
case ParameterConvention::Indirect_In_Guaranteed:
|
|
case ParameterConvention::Indirect_Inout:
|
|
case ParameterConvention::Indirect_InoutAliasable:
|
|
case ParameterConvention::Direct_Unowned:
|
|
case ParameterConvention::Direct_Guaranteed:
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Erase all of the reference counting instructions (in reverse order to have
|
|
// no dangling uses).
|
|
for (auto rit = Users.rbegin(), re = Users.rend(); rit != re; ++rit)
|
|
eraseInstFromFunction(**rit);
|
|
|
|
// And the Apply itself.
|
|
eraseInstFromFunction(*FAS.getInstruction());
|
|
|
|
return true;
|
|
}
|
|
|
|
SILInstruction *
|
|
SILCombiner::optimizeConcatenationOfStringLiterals(ApplyInst *AI) {
|
|
// String literals concatenation optimizer.
|
|
return tryToConcatenateStrings(AI, Builder);
|
|
}
|
|
|
|
/// Returns the address of an object with which the stack location \p ASI is
|
|
/// initialized. This is either a init_existential_addr or the source of a
|
|
/// copy_addr. Returns a null value if the address does not dominate the
|
|
/// alloc_stack user \p ASIUser.
|
|
static SILValue getAddressOfStackInit(AllocStackInst *ASI,
|
|
SILInstruction *ASIUser) {
|
|
SILInstruction *SingleWrite = nullptr;
|
|
// Check that this alloc_stack is initialized only once.
|
|
for (auto Use : ASI->getUses()) {
|
|
auto *User = Use->getUser();
|
|
|
|
// Ignore instructions which don't write to the stack location.
|
|
// Also ignore ASIUser (only kicks in if ASIUser is the original apply).
|
|
if (isa<DeallocStackInst>(User) || isa<DebugValueAddrInst>(User) ||
|
|
isa<DestroyAddrInst>(User) || isa<WitnessMethodInst>(User) ||
|
|
isa<DeinitExistentialAddrInst>(User) ||
|
|
isa<OpenExistentialAddrInst>(User) ||
|
|
User == ASIUser) {
|
|
continue;
|
|
}
|
|
if (auto *CAI = dyn_cast<CopyAddrInst>(User)) {
|
|
if (CAI->getDest() == ASI) {
|
|
if (SingleWrite)
|
|
return SILValue();
|
|
SingleWrite = CAI;
|
|
}
|
|
continue;
|
|
}
|
|
if (isa<InitExistentialAddrInst>(User)) {
|
|
if (SingleWrite)
|
|
return SILValue();
|
|
SingleWrite = User;
|
|
continue;
|
|
}
|
|
if (isa<ApplyInst>(User) || isa<TryApplyInst>(User)) {
|
|
// Ignore function calls which do not write to the stack location.
|
|
auto Idx = Use->getOperandNumber() - ApplyInst::getArgumentOperandNumber();
|
|
auto Conv = FullApplySite(User).getArgumentConvention(Idx);
|
|
if (Conv != SILArgumentConvention::Indirect_In &&
|
|
Conv != SILArgumentConvention::Indirect_In_Guaranteed)
|
|
return SILValue();
|
|
continue;
|
|
}
|
|
// Bail if there is any unknown (and potentially writing) instruction.
|
|
return SILValue();
|
|
}
|
|
if (!SingleWrite)
|
|
return SILValue();
|
|
|
|
// A very simple dominance check. As ASI is an operand of ASIUser,
|
|
// SingleWrite dominates ASIUser if it is in the same block as ASI or ASIUser.
|
|
SILBasicBlock *BB = SingleWrite->getParent();
|
|
if (BB != ASI->getParent() && BB != ASIUser->getParent())
|
|
return SILValue();
|
|
|
|
if (auto *CAI = dyn_cast<CopyAddrInst>(SingleWrite)) {
|
|
// Try to derive the type from the copy_addr that was used to
|
|
// initialize the alloc_stack.
|
|
SILValue CAISrc = CAI->getSrc();
|
|
if (auto *ASI = dyn_cast<AllocStackInst>(CAISrc))
|
|
return getAddressOfStackInit(ASI, CAI);
|
|
return CAISrc;
|
|
}
|
|
return SingleWrite;
|
|
}
|
|
|
|
/// Find the init_existential, which could be used to determine a concrete
|
|
/// type of the \p Self.
|
|
static SILInstruction *findInitExistential(FullApplySite AI, SILValue Self,
|
|
ArchetypeType *&OpenedArchetype,
|
|
SILValue &OpenedArchetypeDef) {
|
|
if (auto *Instance = dyn_cast<AllocStackInst>(Self)) {
|
|
// In case the Self operand is an alloc_stack where a copy_addr copies the
|
|
// result of an open_existential_addr to this stack location.
|
|
if (SILValue Src = getAddressOfStackInit(Instance, AI.getInstruction()))
|
|
Self = Src;
|
|
}
|
|
|
|
if (auto *Open = dyn_cast<OpenExistentialAddrInst>(Self)) {
|
|
auto Op = Open->getOperand();
|
|
auto *ASI = dyn_cast<AllocStackInst>(Op);
|
|
if (!ASI)
|
|
return nullptr;
|
|
|
|
SILValue StackWrite = getAddressOfStackInit(ASI, Open);
|
|
if (!StackWrite)
|
|
return nullptr;
|
|
|
|
auto *IE = dyn_cast<InitExistentialAddrInst>(StackWrite);
|
|
if (!IE)
|
|
return nullptr;
|
|
|
|
OpenedArchetype = Open->getType().castTo<ArchetypeType>();
|
|
OpenedArchetypeDef = Open;
|
|
return IE;
|
|
}
|
|
|
|
if (auto *Open = dyn_cast<OpenExistentialRefInst>(Self)) {
|
|
if (auto *IE = dyn_cast<InitExistentialRefInst>(Open->getOperand())) {
|
|
OpenedArchetype = Open->getType().castTo<ArchetypeType>();
|
|
OpenedArchetypeDef = Open;
|
|
return IE;
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
if (auto *Open = dyn_cast<OpenExistentialMetatypeInst>(Self)) {
|
|
if (auto *IE =
|
|
dyn_cast<InitExistentialMetatypeInst>(Open->getOperand())) {
|
|
auto Ty = Open->getType().getSwiftRValueType();
|
|
while (auto Metatype = dyn_cast<MetatypeType>(Ty))
|
|
Ty = Metatype.getInstanceType();
|
|
OpenedArchetype = cast<ArchetypeType>(Ty);
|
|
OpenedArchetypeDef = Open;
|
|
return IE;
|
|
}
|
|
return nullptr;
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
/// Create a new apply instructions that uses the concrete type instead
|
|
/// of the existential type.
|
|
SILInstruction *
|
|
SILCombiner::createApplyWithConcreteType(FullApplySite AI,
|
|
SILValue NewSelf,
|
|
SILValue Self,
|
|
CanType ConcreteType,
|
|
SILValue ConcreteTypeDef,
|
|
ProtocolConformanceRef Conformance,
|
|
ArchetypeType *OpenedArchetype) {
|
|
// Create a set of arguments.
|
|
SmallVector<SILValue, 8> Args;
|
|
for (auto Arg : AI.getArgumentsWithoutSelf()) {
|
|
Args.push_back(Arg);
|
|
}
|
|
Args.push_back(NewSelf);
|
|
|
|
auto FnTy = AI.getCallee()->getType().castTo<SILFunctionType>();
|
|
SILType SubstCalleeType = AI.getSubstCalleeSILType();
|
|
SILType NewSubstCalleeType;
|
|
|
|
// Form a new set of substitutions where Self is
|
|
// replaced by a concrete type.
|
|
SmallVector<Substitution, 8> Substitutions;
|
|
if (FnTy->isPolymorphic()) {
|
|
auto FnSubsMap =
|
|
FnTy->getGenericSignature()->getSubstitutionMap(AI.getSubstitutions());
|
|
auto FinalSubsMap = FnSubsMap.subst(
|
|
[&](SubstitutableType *type) -> Type {
|
|
if (type == OpenedArchetype)
|
|
return ConcreteType;
|
|
return type;
|
|
},
|
|
[&](CanType origTy, Type substTy,
|
|
ProtocolType *proto) -> Optional<ProtocolConformanceRef> {
|
|
if (substTy->isEqual(ConcreteType)) {
|
|
return Conformance.getInherited(proto->getDecl());
|
|
}
|
|
return ProtocolConformanceRef(proto->getDecl());
|
|
});
|
|
FnTy->getGenericSignature()->getSubstitutions(FinalSubsMap, Substitutions);
|
|
// Handle polymorphic functions by properly substituting
|
|
// their parameter types.
|
|
CanSILFunctionType SFT = FnTy->substGenericArgs(
|
|
AI.getModule(),
|
|
Substitutions);
|
|
NewSubstCalleeType = SILType::getPrimitiveObjectType(SFT);
|
|
} else {
|
|
NewSubstCalleeType =
|
|
SubstCalleeType.subst(AI.getModule(),
|
|
[&](SubstitutableType *type) -> Type {
|
|
if (type == OpenedArchetype)
|
|
return ConcreteType;
|
|
return type;
|
|
},
|
|
MakeAbstractConformanceForGenericType());
|
|
}
|
|
|
|
FullApplySite NewAI;
|
|
Builder.setCurrentDebugScope(AI.getDebugScope());
|
|
Builder.addOpenedArchetypeOperands(AI.getInstruction());
|
|
|
|
if (auto *TAI = dyn_cast<TryApplyInst>(AI))
|
|
NewAI = Builder.createTryApply(AI.getLoc(), AI.getCallee(),
|
|
NewSubstCalleeType,
|
|
Substitutions, Args,
|
|
TAI->getNormalBB(), TAI->getErrorBB());
|
|
else
|
|
NewAI = Builder.createApply(AI.getLoc(), AI.getCallee(),
|
|
NewSubstCalleeType,
|
|
AI.getType(), Substitutions, Args,
|
|
cast<ApplyInst>(AI)->isNonThrowing());
|
|
|
|
if (isa<ApplyInst>(NewAI))
|
|
replaceInstUsesWith(*AI.getInstruction(), NewAI.getInstruction());
|
|
eraseInstFromFunction(*AI.getInstruction());
|
|
|
|
return NewAI.getInstruction();
|
|
}
|
|
|
|
/// Derive a concrete type of self and conformance from the init_existential
|
|
/// instruction.
|
|
static Optional<std::tuple<ProtocolConformanceRef, CanType, SILValue>>
|
|
getConformanceAndConcreteType(FullApplySite AI,
|
|
SILInstruction *InitExistential,
|
|
ProtocolDecl *Protocol,
|
|
SILValue &NewSelf,
|
|
ArrayRef<ProtocolConformanceRef> &Conformances) {
|
|
// Try to derive the concrete type of self from the found init_existential.
|
|
CanType ConcreteType;
|
|
SILValue ConcreteTypeDef;
|
|
if (auto IE = dyn_cast<InitExistentialAddrInst>(InitExistential)) {
|
|
Conformances = IE->getConformances();
|
|
ConcreteType = IE->getFormalConcreteType();
|
|
NewSelf = IE;
|
|
} else if (auto IER = dyn_cast<InitExistentialRefInst>(InitExistential)) {
|
|
Conformances = IER->getConformances();
|
|
ConcreteType = IER->getFormalConcreteType();
|
|
NewSelf = IER->getOperand();
|
|
} else if (auto IEM = dyn_cast<InitExistentialMetatypeInst>(InitExistential)){
|
|
Conformances = IEM->getConformances();
|
|
NewSelf = IEM->getOperand();
|
|
ConcreteType = NewSelf->getType().getSwiftRValueType();
|
|
|
|
auto ExType = IEM->getType().getSwiftRValueType();
|
|
while (auto ExMetatype = dyn_cast<ExistentialMetatypeType>(ExType)) {
|
|
ExType = ExMetatype.getInstanceType();
|
|
ConcreteType = cast<MetatypeType>(ConcreteType).getInstanceType();
|
|
}
|
|
} else {
|
|
return None;
|
|
}
|
|
|
|
if (ConcreteType->isOpenedExistential()) {
|
|
assert(!InitExistential->getTypeDependentOperands().empty() &&
|
|
"init_existential is supposed to have a typedef operand");
|
|
ConcreteTypeDef = InitExistential->getTypeDependentOperands()[0].get();
|
|
}
|
|
|
|
// Find the conformance for the protocol we're interested in.
|
|
for (auto Conformance : Conformances) {
|
|
auto Requirement = Conformance.getRequirement();
|
|
if (Requirement == Protocol) {
|
|
return std::make_tuple(Conformance, ConcreteType, ConcreteTypeDef);
|
|
}
|
|
if (Requirement->inheritsFrom(Protocol)) {
|
|
// If Requirement != Protocol, then the abstract conformance cannot be used
|
|
// as is and we need to create a proper conformance.
|
|
return std::make_tuple(Conformance.getInherited(Protocol), ConcreteType,
|
|
ConcreteTypeDef);
|
|
}
|
|
}
|
|
|
|
llvm_unreachable("couldn't find matching conformance in substitution?");
|
|
}
|
|
|
|
/// Propagate information about a concrete type from init_existential_addr
|
|
/// or init_existential_ref into witness_method conformances and into
|
|
/// apply instructions.
|
|
/// This helps the devirtualizer to replace witness_method by
|
|
/// class_method instructions and then devirtualize.
|
|
SILInstruction *
|
|
SILCombiner::propagateConcreteTypeOfInitExistential(FullApplySite AI,
|
|
ProtocolDecl *Protocol,
|
|
llvm::function_ref<void(CanType , ProtocolConformanceRef)> Propagate) {
|
|
|
|
// Get the self argument.
|
|
SILValue Self;
|
|
if (auto *Apply = dyn_cast<ApplyInst>(AI)) {
|
|
if (Apply->hasSelfArgument())
|
|
Self = Apply->getSelfArgument();
|
|
} else if (auto *Apply = dyn_cast<TryApplyInst>(AI)) {
|
|
if (Apply->hasSelfArgument())
|
|
Self = Apply->getSelfArgument();
|
|
}
|
|
|
|
assert(Self && "Self argument should be present");
|
|
|
|
// Try to find the init_existential, which could be used to
|
|
// determine a concrete type of the self.
|
|
ArchetypeType *OpenedArchetype = nullptr;
|
|
SILValue OpenedArchetypeDef;
|
|
SILInstruction *InitExistential =
|
|
findInitExistential(AI, Self, OpenedArchetype, OpenedArchetypeDef);
|
|
if (!InitExistential)
|
|
return nullptr;
|
|
|
|
// Try to derive the concrete type of self and a related conformance from
|
|
// the found init_existential.
|
|
ArrayRef<ProtocolConformanceRef> Conformances;
|
|
auto NewSelf = SILValue();
|
|
auto ConformanceAndConcreteType =
|
|
getConformanceAndConcreteType(AI, InitExistential,
|
|
Protocol, NewSelf, Conformances);
|
|
if (!ConformanceAndConcreteType)
|
|
return nullptr;
|
|
|
|
ProtocolConformanceRef Conformance = std::get<0>(*ConformanceAndConcreteType);
|
|
CanType ConcreteType = std::get<1>(*ConformanceAndConcreteType);
|
|
SILValue ConcreteTypeDef = std::get<2>(*ConformanceAndConcreteType);
|
|
|
|
SILOpenedArchetypesTracker *OldOpenedArchetypesTracker =
|
|
Builder.getOpenedArchetypesTracker();
|
|
|
|
SILOpenedArchetypesTracker OpenedArchetypesTracker(*AI.getFunction());
|
|
|
|
if (ConcreteType->isOpenedExistential()) {
|
|
// Prepare a mini-mapping for opened archetypes.
|
|
// SILOpenedArchetypesTracker OpenedArchetypesTracker(*AI.getFunction());
|
|
OpenedArchetypesTracker.addOpenedArchetypeDef(
|
|
cast<ArchetypeType>(ConcreteType), ConcreteTypeDef);
|
|
Builder.setOpenedArchetypesTracker(&OpenedArchetypesTracker);
|
|
}
|
|
|
|
// Propagate the concrete type into the callee-operand if required.
|
|
Propagate(ConcreteType, Conformance);
|
|
|
|
// Create a new apply instruction that uses the concrete type instead
|
|
// of the existential type.
|
|
auto *NewAI = createApplyWithConcreteType(AI, NewSelf, Self, ConcreteType,
|
|
ConcreteTypeDef, Conformance,
|
|
OpenedArchetype);
|
|
|
|
if (ConcreteType->isOpenedExistential())
|
|
Builder.setOpenedArchetypesTracker(OldOpenedArchetypesTracker);
|
|
|
|
return NewAI;
|
|
}
|
|
|
|
SILInstruction *
|
|
SILCombiner::propagateConcreteTypeOfInitExistential(FullApplySite AI,
|
|
WitnessMethodInst *WMI) {
|
|
// Check if it is legal to perform the propagation.
|
|
if (WMI->getConformance().isConcrete())
|
|
return nullptr;
|
|
|
|
// Don't specialize Apply instructions that return the Self type.
|
|
// Notice that it is sufficient to compare the return type to the
|
|
// substituted type because types that depend on the Self type are
|
|
// not allowed (for example [Self] is not allowed).
|
|
if (AI.getType().getSwiftRValueType() == WMI->getLookupType())
|
|
return nullptr;
|
|
|
|
// We need to handle the Self return type.
|
|
// In we find arguments that are not the 'self' argument and if
|
|
// they are of the Self type then we abort the optimization.
|
|
for (auto Arg : AI.getArgumentsWithoutSelf()) {
|
|
if (Arg->getType().getSwiftRValueType() == WMI->getLookupType())
|
|
return nullptr;
|
|
}
|
|
|
|
// The lookup type is not an opened existential type,
|
|
// thus it cannot be made more concrete.
|
|
if (!WMI->getLookupType()->isOpenedExistential())
|
|
return nullptr;
|
|
|
|
// Obtain the protocol which should be used by the conformance.
|
|
auto *PD = WMI->getLookupProtocol();
|
|
|
|
// Propagate the concrete type into a callee-operand, which is a
|
|
// witness_method instruction.
|
|
auto PropagateIntoOperand = [this, &WMI, &AI](CanType ConcreteType,
|
|
ProtocolConformanceRef Conformance) {
|
|
// Keep around the dependence on the open instruction unless we've
|
|
// actually eliminated the use.
|
|
auto *NewWMI = Builder.createWitnessMethod(WMI->getLoc(),
|
|
ConcreteType,
|
|
Conformance, WMI->getMember(),
|
|
WMI->getType(),
|
|
WMI->isVolatile());
|
|
// Replace only uses of the witness_method in the apply that is going to
|
|
// be changed.
|
|
MutableArrayRef<Operand> Operands = AI.getInstruction()->getAllOperands();
|
|
for (auto &Op : Operands) {
|
|
if (Op.get() == WMI)
|
|
Op.set(NewWMI);
|
|
}
|
|
if (WMI->use_empty())
|
|
eraseInstFromFunction(*WMI);
|
|
};
|
|
|
|
// Try to perform the propagation.
|
|
return propagateConcreteTypeOfInitExistential(AI, PD, PropagateIntoOperand);
|
|
}
|
|
|
|
|
|
SILInstruction *
|
|
SILCombiner::propagateConcreteTypeOfInitExistential(FullApplySite AI) {
|
|
// Check if it is legal to perform the propagation.
|
|
if (!AI.hasSubstitutions())
|
|
return nullptr;
|
|
auto *Callee = AI.getReferencedFunction();
|
|
if (!Callee || !Callee->getDeclContext())
|
|
return nullptr;
|
|
|
|
// Bail, if there is no self argument.
|
|
SILValue Self;
|
|
if (auto *Apply = dyn_cast<ApplyInst>(AI)) {
|
|
if (Apply->hasSelfArgument())
|
|
Self = Apply->getSelfArgument();
|
|
} else if (auto *Apply = dyn_cast<TryApplyInst>(AI)) {
|
|
if (Apply->hasSelfArgument())
|
|
Self = Apply->getSelfArgument();
|
|
}
|
|
if (!Self)
|
|
return nullptr;
|
|
|
|
// We need to handle the Self return type.
|
|
// In we find arguments that are not the 'self' argument and if
|
|
// they are of the Self type then we abort the optimization.
|
|
for (auto Arg : AI.getArgumentsWithoutSelf()) {
|
|
if (Arg->getType().getSwiftRValueType() ==
|
|
AI.getArguments().back()->getType().getSwiftRValueType())
|
|
return nullptr;
|
|
}
|
|
|
|
// Obtain the protocol whose which should be used by the conformance.
|
|
auto *AFD = dyn_cast<AbstractFunctionDecl>(Callee->getDeclContext());
|
|
if (!AFD)
|
|
return nullptr;
|
|
auto *PD = AFD->getDeclContext()->getAsProtocolOrProtocolExtensionContext();
|
|
|
|
|
|
// No need to propagate anything into the callee operand.
|
|
auto PropagateIntoOperand = [] (CanType ConcreteType,
|
|
ProtocolConformanceRef Conformance) {};
|
|
|
|
// Try to perform the propagation.
|
|
return propagateConcreteTypeOfInitExistential(AI, PD, PropagateIntoOperand);
|
|
}
|
|
|
|
/// \brief Check that all users of the apply are retain/release ignoring one
|
|
/// user.
|
|
static bool
|
|
hasOnlyRetainReleaseUsers(ApplyInst *AI, SILInstruction *IgnoreUser,
|
|
SmallVectorImpl<SILInstruction *> &Users) {
|
|
for (auto *Use : getNonDebugUses(AI)) {
|
|
if (Use->getUser() == IgnoreUser)
|
|
continue;
|
|
|
|
if (!isa<RetainValueInst>(Use->getUser()) &&
|
|
!isa<ReleaseValueInst>(Use->getUser()) &&
|
|
!isa<StrongRetainInst>(Use->getUser()) &&
|
|
!isa<StrongReleaseInst>(Use->getUser()))
|
|
return false;
|
|
|
|
Users.push_back(Use->getUser());
|
|
}
|
|
return true;
|
|
};
|
|
|
|
/// \brief We only know how to simulate reference call effects for unary
|
|
/// function calls that take their argument @owned or @guaranteed and return an
|
|
/// @owned value.
|
|
static bool knowHowToEmitReferenceCountInsts(ApplyInst *Call) {
|
|
if (Call->getNumArguments() != 1)
|
|
return false;
|
|
|
|
FunctionRefInst *FRI = cast<FunctionRefInst>(Call->getCallee());
|
|
SILFunction *F = FRI->getReferencedFunction();
|
|
auto FnTy = F->getLoweredFunctionType();
|
|
|
|
// Look at the result type.
|
|
if (FnTy->getNumResults() != 1)
|
|
return false;
|
|
auto ResultInfo = FnTy->getResults()[0];
|
|
if (ResultInfo.getConvention() != ResultConvention::Owned)
|
|
return false;
|
|
|
|
// Look at the parameter.
|
|
auto Params = FnTy->getParameters();
|
|
(void) Params;
|
|
assert(Params.size() == 1 && "Expect one parameter");
|
|
auto ParamConv = FnTy->getParameters()[0].getConvention();
|
|
|
|
return ParamConv == ParameterConvention::Direct_Owned ||
|
|
ParamConv == ParameterConvention::Direct_Guaranteed;
|
|
}
|
|
|
|
/// \brief Add reference counting operations equal to the effect of the call.
|
|
static void emitMatchingRCAdjustmentsForCall(ApplyInst *Call, SILValue OnX) {
|
|
FunctionRefInst *FRI = cast<FunctionRefInst>(Call->getCallee());
|
|
SILFunction *F = FRI->getReferencedFunction();
|
|
auto FnTy = F->getLoweredFunctionType();
|
|
assert(FnTy->getNumResults() == 1);
|
|
auto ResultInfo = FnTy->getResults()[0];
|
|
(void) ResultInfo;
|
|
|
|
assert(ResultInfo.getConvention() == ResultConvention::Owned &&
|
|
"Expect a @owned return");
|
|
assert(Call->getNumArguments() == 1 && "Expect a unary call");
|
|
|
|
// Emit a retain for the @owned return.
|
|
SILBuilderWithScope Builder(Call);
|
|
Builder.createRetainValue(Call->getLoc(), OnX, Builder.getDefaultAtomicity());
|
|
|
|
// Emit a release for the @owned parameter, or none for a @guaranteed
|
|
// parameter.
|
|
auto Params = FnTy->getParameters();
|
|
(void) Params;
|
|
assert(Params.size() == 1 && "Expect one parameter");
|
|
auto ParamInfo = FnTy->getParameters()[0].getConvention();
|
|
assert(ParamInfo == ParameterConvention::Direct_Owned ||
|
|
ParamInfo == ParameterConvention::Direct_Guaranteed);
|
|
|
|
if (ParamInfo == ParameterConvention::Direct_Owned)
|
|
Builder.createReleaseValue(Call->getLoc(), OnX, Builder.getDefaultAtomicity());
|
|
}
|
|
|
|
/// Replace an application of a cast composition f_inverse(f(x)) by x.
|
|
bool SILCombiner::optimizeIdentityCastComposition(ApplyInst *FInverse,
|
|
StringRef FInverseName,
|
|
StringRef FName) {
|
|
// Needs to have a known semantics.
|
|
if (!FInverse->hasSemantics(FInverseName))
|
|
return false;
|
|
|
|
// We need to know how to replace the call by reference counting instructions.
|
|
if (!knowHowToEmitReferenceCountInsts(FInverse))
|
|
return false;
|
|
|
|
// Need to have a matching 'f'.
|
|
auto *F = dyn_cast<ApplyInst>(FInverse->getArgument(0));
|
|
if (!F)
|
|
return false;
|
|
if (!F->hasSemantics(FName))
|
|
return false;
|
|
if (!knowHowToEmitReferenceCountInsts(F))
|
|
return false;
|
|
|
|
// The types must match.
|
|
if (F->getArgument(0)->getType() != FInverse->getType())
|
|
return false;
|
|
|
|
// Retains, releases of the result of F.
|
|
SmallVector<SILInstruction *, 16> RetainReleases;
|
|
if (!hasOnlyRetainReleaseUsers(F, FInverse, RetainReleases))
|
|
return false;
|
|
|
|
// Okay, now we know we can remove the calls.
|
|
auto X = F->getArgument(0);
|
|
|
|
// Redirect f's result's retains/releases to affect x.
|
|
for (auto *User : RetainReleases) {
|
|
// X might not be strong_retain/release'able. Replace it by a
|
|
// retain/release_value on X instead.
|
|
if (isa<StrongRetainInst>(User)) {
|
|
SILBuilderWithScope Builder(User);
|
|
Builder.createRetainValue(User->getLoc(), X,
|
|
cast<StrongRetainInst>(User)->getAtomicity());
|
|
eraseInstFromFunction(*User);
|
|
continue;
|
|
}
|
|
if (isa<StrongReleaseInst>(User)) {
|
|
SILBuilderWithScope Builder(User);
|
|
Builder.createReleaseValue(User->getLoc(), X,
|
|
cast<StrongReleaseInst>(User)->getAtomicity());
|
|
eraseInstFromFunction(*User);
|
|
continue;
|
|
}
|
|
User->setOperand(0, X);
|
|
}
|
|
|
|
// Simulate the reference count effects of the calls before removing
|
|
// them.
|
|
emitMatchingRCAdjustmentsForCall(F, X);
|
|
emitMatchingRCAdjustmentsForCall(FInverse, X);
|
|
|
|
// Replace users of f_inverse by x.
|
|
replaceInstUsesWith(*FInverse, X);
|
|
|
|
// Remove the calls.
|
|
eraseInstFromFunction(*FInverse);
|
|
eraseInstFromFunction(*F);
|
|
|
|
return true;
|
|
}
|
|
|
|
SILInstruction *SILCombiner::visitApplyInst(ApplyInst *AI) {
|
|
Builder.setCurrentDebugScope(AI->getDebugScope());
|
|
// apply{partial_apply(x,y)}(z) -> apply(z,x,y) is triggered
|
|
// from visitPartialApplyInst(), so bail here.
|
|
if (isa<PartialApplyInst>(AI->getCallee()))
|
|
return nullptr;
|
|
|
|
if (auto *CFI = dyn_cast<ConvertFunctionInst>(AI->getCallee()))
|
|
return optimizeApplyOfConvertFunctionInst(AI, CFI);
|
|
|
|
// Optimize readonly functions with no meaningful users.
|
|
SILFunction *SF = AI->getReferencedFunction();
|
|
if (SF && SF->getEffectsKind() < EffectsKind::ReadWrite) {
|
|
UserListTy Users;
|
|
if (recursivelyCollectARCUsers(Users, AI)) {
|
|
if (eraseApply(AI, Users))
|
|
return nullptr;
|
|
}
|
|
// We found a user that we can't handle.
|
|
}
|
|
|
|
if (SF) {
|
|
if (SF->getEffectsKind() < EffectsKind::ReadWrite) {
|
|
// Try to optimize string concatenation.
|
|
if (auto I = optimizeConcatenationOfStringLiterals(AI)) {
|
|
return I;
|
|
}
|
|
}
|
|
if (SF->hasSemanticsAttr("array.uninitialized")) {
|
|
UserListTy Users;
|
|
// If the uninitialized array is only written into then it can be removed.
|
|
if (recursivelyCollectARCUsers(Users, AI)) {
|
|
if (eraseApply(AI, Users))
|
|
return nullptr;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
// (apply (thin_to_thick_function f)) to (apply f)
|
|
if (auto *TTTFI = dyn_cast<ThinToThickFunctionInst>(AI->getCallee())) {
|
|
// TODO: Handle substitutions and indirect results
|
|
if (AI->hasSubstitutions() || AI->hasIndirectResults())
|
|
return nullptr;
|
|
SmallVector<SILValue, 4> Arguments;
|
|
for (auto &Op : AI->getArgumentOperands()) {
|
|
Arguments.push_back(Op.get());
|
|
}
|
|
// The type of the substitution is the source type of the thin to thick
|
|
// instruction.
|
|
SILType substTy = TTTFI->getOperand()->getType();
|
|
Builder.addOpenedArchetypeOperands(AI);
|
|
auto *NewAI = Builder.createApply(AI->getLoc(), TTTFI->getOperand(),
|
|
substTy, AI->getType(),
|
|
AI->getSubstitutions(), Arguments,
|
|
AI->isNonThrowing());
|
|
return NewAI;
|
|
}
|
|
|
|
// (apply (witness_method)) -> propagate information about
|
|
// a concrete type from init_existential_addr or init_existential_ref.
|
|
if (auto *WMI = dyn_cast<WitnessMethodInst>(AI->getCallee())) {
|
|
propagateConcreteTypeOfInitExistential(AI, WMI);
|
|
return nullptr;
|
|
}
|
|
|
|
// (apply (function_ref method_from_protocol_extension)) ->
|
|
// propagate information about a concrete type from init_existential_addr or
|
|
// init_existential_ref.
|
|
if (isa<FunctionRefInst>(AI->getCallee())) {
|
|
if (propagateConcreteTypeOfInitExistential(AI)) {
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
// Optimize f_inverse(f(x)) -> x.
|
|
if (optimizeIdentityCastComposition(AI, "convertFromObjectiveC",
|
|
"convertToObjectiveC"))
|
|
return nullptr;
|
|
if (optimizeIdentityCastComposition(AI, "convertToObjectiveC",
|
|
"convertFromObjectiveC"))
|
|
return nullptr;
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
bool SILCombiner::
|
|
isTryApplyResultNotUsed(UserListTy &AcceptedUses, TryApplyInst *TAI) {
|
|
SILBasicBlock *NormalBB = TAI->getNormalBB();
|
|
SILBasicBlock *ErrorBB = TAI->getErrorBB();
|
|
|
|
// The results of a try_apply are not only the normal and error return values,
|
|
// but also the decision whether it throws or not. Therefore we have to check
|
|
// if both, the normal and the error block, are empty and lead to a common
|
|
// destination block.
|
|
|
|
// Check if the normal and error blocks have a common single successor.
|
|
auto *NormalBr = dyn_cast<BranchInst>(NormalBB->getTerminator());
|
|
if (!NormalBr)
|
|
return false;
|
|
auto *ErrorBr = dyn_cast<BranchInst>(ErrorBB->getTerminator());
|
|
if (!ErrorBr || ErrorBr->getDestBB() != NormalBr->getDestBB())
|
|
return false;
|
|
|
|
assert(NormalBr->getNumArgs() == ErrorBr->getNumArgs() &&
|
|
"mismatching number of arguments for the same destination block");
|
|
|
|
// Check if both blocks pass the same arguments to the common destination.
|
|
for (unsigned Idx = 0, End = NormalBr->getNumArgs(); Idx < End; Idx++) {
|
|
if (NormalBr->getArg(Idx) != ErrorBr->getArg(Idx))
|
|
return false;
|
|
}
|
|
|
|
// Check if the normal and error results only have ARC operations as uses.
|
|
if (!recursivelyCollectARCUsers(AcceptedUses, NormalBB->getArgument(0)))
|
|
return false;
|
|
if (!recursivelyCollectARCUsers(AcceptedUses, ErrorBB->getArgument(0)))
|
|
return false;
|
|
|
|
SmallPtrSet<SILInstruction *, 8> UsesSet;
|
|
for (auto *I : AcceptedUses)
|
|
UsesSet.insert(I);
|
|
|
|
// Check if the normal and error blocks are empty, except the ARC uses.
|
|
for (auto &I : *NormalBB) {
|
|
if (!UsesSet.count(&I) && !isa<TermInst>(&I))
|
|
return false;
|
|
}
|
|
for (auto &I : *ErrorBB) {
|
|
if (!UsesSet.count(&I) && !isa<TermInst>(&I))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
SILInstruction *SILCombiner::visitTryApplyInst(TryApplyInst *AI) {
|
|
// apply{partial_apply(x,y)}(z) -> apply(z,x,y) is triggered
|
|
// from visitPartialApplyInst(), so bail here.
|
|
if (isa<PartialApplyInst>(AI->getCallee()))
|
|
return nullptr;
|
|
|
|
if (auto *CFI = dyn_cast<ConvertFunctionInst>(AI->getCallee())) {
|
|
return optimizeApplyOfConvertFunctionInst(AI, CFI);
|
|
}
|
|
|
|
// Optimize readonly functions with no meaningful users.
|
|
SILFunction *Fn = AI->getReferencedFunction();
|
|
if (Fn && Fn->getEffectsKind() < EffectsKind::ReadWrite) {
|
|
UserListTy Users;
|
|
if (isTryApplyResultNotUsed(Users, AI)) {
|
|
SILBasicBlock *BB = AI->getParent();
|
|
SILBasicBlock *NormalBB = AI->getNormalBB();
|
|
SILBasicBlock *ErrorBB = AI->getErrorBB();
|
|
SILLocation Loc = AI->getLoc();
|
|
const SILDebugScope *DS = AI->getDebugScope();
|
|
if (eraseApply(AI, Users)) {
|
|
// Replace the try_apply with a cond_br false, which will be removed by
|
|
// SimplifyCFG. We don't want to modify the CFG in SILCombine.
|
|
Builder.setInsertionPoint(BB);
|
|
Builder.setCurrentDebugScope(DS);
|
|
auto *TrueLit = Builder.createIntegerLiteral(Loc,
|
|
SILType::getBuiltinIntegerType(1, Builder.getASTContext()), 0);
|
|
Builder.createCondBranch(Loc, TrueLit, NormalBB, ErrorBB);
|
|
|
|
NormalBB->eraseArgument(0);
|
|
ErrorBB->eraseArgument(0);
|
|
return nullptr;
|
|
}
|
|
}
|
|
// We found a user that we can't handle.
|
|
}
|
|
|
|
// (try_apply (thin_to_thick_function f)) to (try_apply f)
|
|
if (auto *TTTFI = dyn_cast<ThinToThickFunctionInst>(AI->getCallee())) {
|
|
// TODO: Handle substitutions and indirect results
|
|
if (AI->hasSubstitutions() || AI->hasIndirectResults())
|
|
return nullptr;
|
|
SmallVector<SILValue, 4> Arguments;
|
|
for (auto &Op : AI->getArgumentOperands()) {
|
|
Arguments.push_back(Op.get());
|
|
}
|
|
// The type of the substitution is the source type of the thin to thick
|
|
// instruction.
|
|
SILType substTy = TTTFI->getOperand()->getType();
|
|
auto *NewAI = Builder.createTryApply(AI->getLoc(), TTTFI->getOperand(),
|
|
substTy,
|
|
AI->getSubstitutions(), Arguments,
|
|
AI->getNormalBB(), AI->getErrorBB());
|
|
return NewAI;
|
|
}
|
|
|
|
// (apply (witness_method)) -> propagate information about
|
|
// a concrete type from init_existential_addr or init_existential_ref.
|
|
if (auto *WMI = dyn_cast<WitnessMethodInst>(AI->getCallee())) {
|
|
propagateConcreteTypeOfInitExistential(AI, WMI);
|
|
return nullptr;
|
|
}
|
|
|
|
// (apply (function_ref method_from_protocol_extension)) ->
|
|
// propagate information about a concrete type from init_existential_addr or
|
|
// init_existential_ref.
|
|
if (isa<FunctionRefInst>(AI->getCallee())) {
|
|
if (propagateConcreteTypeOfInitExistential(AI)) {
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
return nullptr;
|
|
}
|