Call findOwnershipReferenceRoot when checking for guaranteed values
from SILFunctionArgument.
TODO: We need to add a component path to a reference root abstraction
to handle references that come from a struct_extract or tuple_extract.
Required to fix SILCombine.
Divide the logic into smaller pieces. This allows passes to check for
replaceability before generating the replacement value.
Preparation for simplifying OSSA utilities into smaller logical
components making them flexibile and allowing improvements to be
staged in.
Preparation for rewriting non-trivial terminators and generalizing
support for guaranteed phis.
Add guaranteedUsePoints to the RAUW context. This will replace ALL
existing context book-keeping once the old code is deleted.
Introduce a borrowCopyOverScope entry point to handle extending
lifetime over a BorrowedValue. This simply uses the
BorrowedLifetimeExtender.
Introduce higher-level APIs:
- borrowOverValue to extened over a guaranteedValue
- borrowOverSingleUse to extened over a single guaranteed use
These replace both createPlusZeroBorrow and createPlusOneBorrow.
Update RAUW-ctor, RAUW::handleUnowned, and replaceAddressUses to use
the new API.
Restructure RAUW::canFixUpOwnershipForRAUW. Simply use
findInnerTransitiveGuaranteedUses.
Replace RAUW::handleGuaranteed and rewriteReborrows with
OLE::borrowOverValue.
Use the BorrowedLifetimeExtender utility to handle all situations
correctly.
TODO: createPlusOneBorrow can be completely removed, and a massive
amount of confusing/incomplete code can be deleted in a follow-up
commit.
Without introducing any new borrow scopes or owned lifetimes.
Top-level APIs:
- extendOwnedLifetime()
- extendLocalBorrow()
New utilitiy: GuaranteedOwnershipExtension.
This is a simple utility to determine whether new uses can be added to
an existing guaranteed value. It reports the kind of transformation
needed and performs the transformation if requested. If transformation
is needed, it simply calls one of the two top-level APIs.
Prevent CSE from introducing useless copies, borrows, and
clones. Otherwise it will endlessly clone and re-cse the same
projections endlessly.
TODO: Most of these cases can be handled GuarateedOwnershipExtension
or extendOwnedLifetime without requiring any copies!
Move the code that sets up the context above all the code that
depends on that context.
This helps keep the relationship straight between several
sub-utilities and gradually clean them up.
Allow quickly checking for valid OSSA value substitution independent
from information about the value's lifetime or scope. Make it a static
member to allow this to check to be done outside of the RAUW
utility. e.g. from SimplifyCFG.
findInnerTransitiveUsesForAddress was incorrectly returning true for
pointer escapes.
Introduce enum AddressUseKind { NonEscaping, PointerEscape, Unknown };
Clients need to handle each of these cases differently.
Recording uses is now optional. This utility is also used simply to
check for PointerEscape. When uses are recorded, they are used to
extend a live range. There could be a large number of transitive uses
that we don't want to pass back to the caller.
This mainly simplifies the utility, but also improves optimization as
a side effect.
Update OSSA RAUW after replacing BorrowedAddress with AddressOwnership.
InteriorPointer is no longer needed. This simplifies the fixup
context. Eventually the fixup context will be very lightweight. This
is just the first step.
This replaces the recent BorrowedAddress utility (the address may not
be borrowed!)
APIs:
AddressOwnership::hasLocalOwnershipLifetime() - convenience on top of
AccessBase::hasLocalOwnershipLifetime().
AddressOwnership::getOwnershipReferenceRoot() - convenience on top of
AccessBase::getOwnershipReferenceRoot().
AddressOwnership::findTransitiveUses() - wrapper API over the internal
helper findTransitiveUsesForAddress()
AddressOwnership::areUsesWithinLifetime() - wrapper adds a quick check
on top of BorrowedValue::areUsesWithinLifetime()
Handle SSA update (phi creation) when extending an owned lifetime over
a borrowed lifetime.
This is a layer of logic above BorrowedValue but below
OwnershipLifetimeExtender and other higher-level utilities.
Ownership rauw uses a shared ownership fixup context to maintain state.
When ownership rauw fails, due to some invalid condition, we leave
behind stale data in this shared ownership fixup context.
This stale context can indvertantly affect the next rauw on addresses.
In addition to setting the ownership fixup context to nullptr, we
should also clear it so that it's internal data structures are
cleared.
Determines whether an address might be inside a borrowed scope. If so,
then any address substitution needs to find that scope boundary to
avoid violating its basic guarantee that all uses are within scope.
Don't allow an owned call argument to be considered a valid BorrowingOperand.
More generally, make sure there is a perfect equivalence between valid
BorrowingOperand and the corresponding OperandOwnership kind.
This directly adds support to BasicBlockCloner for updating OSSA.
It also adds a much more general-purpose GuaranteedPhiBorrowFixup
utility which can be used for more complicated SSA updates, in which
multiple phis need to be created. More generally, it handles adding
nested borrow scopes for guaranteed phis even when that phi is used by
other guaranteed phis.
Generalize the AccessUseDefChainCloner in MemAccessUtils. It was
always meant to work this way, just needed a client.
Add a new API AccessUseDefChainCloner::canCloneUseDefChain().
Add a bailout for begin_borrow and mark_dependence. Those
projections may appear on an access path, but they can't be
individually cloned without compensating.
Delete InteriorPointerAddressRebaseUseDefChainCloner.
Add a check in OwnershipRAUWHelper for canCloneUseDefChain.
Add test cases for begin_borrow and mark_dependence.
This PR just removes an unnecessary error raised in
OwnershipLifetimeExtender::createPlusOneCopy.
We can ownership rauw a value inside the loop with a value outside the
loop. findJointPostDominatingSet correctly helps create control
equivalent copies inside the loop for replacement.
Instead make `findJointPostDominatingSet` a stand-alone function.
There is no need to keep the temporary SmallVector alive across multiple calls of findJointPostDominatingSet for the purpose of re-using malloc'ed memory. The worklist usually contains way less elements than its small size.
This is necessitated by the SILArgument representation. It has the
tragic property that adding unrelated phis invalidates existing
phis. Therefore, the optimizer can't do book-keeping of phi values by
refering directly to SILValues or Operands. Instead, it must only
refer to SILBasicBlocks and argument indices.
...for handling borrow scopes:
- find[Extended]TransitiveGuaranteedUses
- BorrowingOperand::visit[Extended]ScopeEndingUses
- BorrowedValue BorrowingOperand::getBorrowIntroducingUserResult()
And document the logic.
Mostly NFC in this commit, but more RAUW cases should be correctly
handled now.
Particularly, ensure that we can cleanly handle all manner of
reborrows. This is necessary to ensure both CanonicalizeOSSA and
replace-all-uses higher-level utilities handle all cases.
This generalizes some of the logic in CanonicalizeOSSA so it can be
shared by other high-level OSSA utilities.
These utilities extend the fundamental BorrowingOperand and
BorrowedValue functionality that has been designed recently. It builds
on and replaces a mix of piece-meal functionality that was needed
during bootstrapping. These APIs are now consistent with the more
recently designed code. It should be obvious what they mean and how to
use them, should be very hard to use them incorrectly, and should be
as efficient as possible, since they're fundamental to other
higher-level utilities.
Most importantly, there were several very subtle correctness issues
that were not handled cleanly in a centralized way. There are now a
mix of higher-level utilities trying to use this underlying
functionality, but it was hard to tell if all those higher-level
utilities were covering all the subtle cases:
- checking for PointerEscapes everywhere we need to
- the differences between uses of borrow introducers and other
guaranteed values
- handling the uses of nested borrow scopes
- transitively handling reborrows
- the difference between nested and top-level reborrows
- forwarding destructures (which can cause exponential explosion)
In short, I was fundamentally confused and getting things wrong before
designing these utilities.
My goal was to reduce the size of SILLocation. It now contains only of a storage union, which is basically a pointer and a bitfield containing the Kind, StorageKind and flags. By far, most locations are only single pointers to an AST node. For the few cases where more data needs to be stored, this data is allocated separately: with the SILModule's bump pointer allocator.
While working on this, I couldn't resist to do a major refactoring to simplify the code:
* removed unused stuff
* The term "DebugLoc" was used for 3 completely different things:
- for `struct SILLocation::DebugLoc` -> renamed it to `FilePosition`
- for `hasDebugLoc()`/`getDebugSourceLoc()` -> renamed it to `hasASTNodeForDebugging()`/`getSourceLocForDebugging()`
- for `class SILDebugLocation` -> kept it as it is (though, `SILScopedLocation` would be a better name, IMO)
* made SILLocation more "functional", i.e. replaced some setters with corresponding constructors
* replaced the hand-written bitfield `KindData` with C bitfields
* updated and improved comments
A few notes:
1. We already have provide an operator* that does this and even better makes the
conversion explicit in the source.
2. The bool operator checks both that kind is not invalid and that the operand
is non-null. This ensures we can use an `if` to properly check for a valid
BorrowingOperand.
Some notes:
1. I moved the identity round-trip case to InstSimplify since that is where
optimizations like that are.
2. I did not update in this commit the code that eliminates convert_function
when it is only destroyed. In a subsequent commit I am going to implement
that in a general way and apply it to all forwarding instructions.
3. I implemented eliminating convert_function with ownership only uses in a
utility so that I can reuse it for other similar optimizations in SILCombine.
Instead of saving BorrowingOperand on the context save the SILBasicBlock
and index of the terminator operand.
This avoids the use-after-free in eliminateReborrowsOfRecursiveBorrows.
Previously, eliminateReborrowsOfRecursiveBorrows called helper
insertOwnedBaseValueAlongBranchEdge, which can delete a branch
instruction (reborrow) that could have been cached in
recursiveReborrows.
Already, we allow for owned/guaranteed values to be passed to values with
unowned ownership. This just cleans up the SIL a bit.
That being said, we still need unchecked_ownership_conversion for the terminator
case since any owned/guaranteed's value (ignoreing function parameters) will end
before the return meaning that we need some way of escaping it.