inlining, generic/closure specialization, and devirtualization optimization passes.
SILFunction::canBeInlinedIntoCaller now exlicitly requires a caller's SerializedKind_t arg.
isAnySerialized() is added as a convenience function that checks if [serialized] or [serialized_for_pkg].
Resolves rdar://128704752
[serialized_for_package] if Package CMO is enabled. The latter kind
allows a function to be serialized even if it contains loadable types,
if Package CMO is enabled. Renamed IsSerialized_t as SerializedKind_t.
The tri-state serialization kind requires validating inlinability
depending on the serialization kinds of callee vs caller; e.g. if the
callee is [serialized_for_package], the caller must be _not_ [serialized].
Renamed `hasValidLinkageForFragileInline` as `canBeInlinedIntoCaller`
that takes in its caller's SerializedKind as an argument. Another argument
`assumeFragileCaller` is also added to ensure that the calle sites of
this function know the caller is serialized unless it's called for SIL
inlining optimization passes.
The [serialized_for_package] attribute is allowed for SIL function, global var,
v-table, and witness-table.
Resolves rdar://128406520
We weren't looking at the length of an opaque archetype's type parameter,
which could lead to unbounded growth in the number of emitted specializations.
Fixes rdar://problem/121867690.
This may involve changing the linkage of the specialized function.
If called from a serialized function we cannot make the specialized function shared and non-serialized.
The only other option is to keep the original function's linkage.
rdar://121675461
Marker protocols can be ignored in the specialization, because they have no witness and the conformance will be checked before the specialization is applied.
Also fixes an issue where multiple requirements on the same type caused type mismatches in the erased signature.
rdar://121071710
Currently it uses builtin integers, which round up to the next power of 2, which is not what we want here. Instead it should use builtin vectors of uint8 and a number of elements equal to the stride in bytes.
rdar://119329771
This layout allows adding pre-specializations for trivial types that have a different size, but the same stride. This is especially useful for collections, where the stride is the important factor.
* [SILOpt] Allow pre-specializations for _Trivial of known size
rdar://119224542
This allows pre-specializations to be generated and applied for trivial types of a shared size.
* [SILOpt] Apply _Class pre-specializations to wrapped single references
rdar://119047505
A struct wrapping a single reference has an identical layout to the reference itself, so we can apply the same pre-specializations.
* Add test case for overaligned struct
This means to support specializing functions with indirect error results.
Also, when specializing (and the concrete error type is loadable), convert the indirect error to a direct error.
rdar://118532113
Unlike in regular swift, The class_method instruction references the specialized version of a class method.
This must be handled in ReabstractionInfo: it needs to work without a concrete callee SIL function.
Also, the SILVerifier must handle the case that a class_method instruction references a specialized method.
- VTableSpecializer, a new pass that synthesizes a new vtable per each observed concrete type used
- Don't use full type metadata refs in embedded Swift
- Lazily emit specialized class metadata (LazySpecializedClassMetadata) in IRGen
- Don't emit regular class metadata for a class decl if it's generic (only emit the specialized metadata)
llvm::SmallSetVector changed semantics
(https://reviews.llvm.org/D152497) resulting in build failures in Swift.
The old semantics allowed usage of types that did not have an
`operator==` because `SmallDenseSet` uses `DenseSetInfo<T>::isEqual` to
determine equality. The new implementation switched to using
`std::find`, which internally uses `operator==`. This type is used
pretty frequently with `swift::Type`, which intentionally deletes
`operator==` as it is not the canonical type and therefore cannot be
compared in normal circumstances.
This patch adds a new type-alias to the Swift namespace that provides
the old semantic behavior for `SmallSetVector`. I've also gone through
and replaced usages of `llvm::SmallSetVector` with the
`Swift::SmallSetVector` in places where we're storing a type that
doesn't implement or explicitly deletes `operator==`. The changes to
`llvm::SmallSetVector` should improve compile-time performance, so I
left the `llvm::SmallSetVector` where possible.
This is phase-1 of switching from llvm::Optional to std::optional in the
next rebranch. llvm::Optional was removed from upstream LLVM, so we need
to migrate off rather soon. On Darwin, std::optional, and llvm::Optional
have the same layout, so we don't need to be as concerned about ABI
beyond the name mangling. `llvm::Optional` is only returned from one
function in
```
getStandardTypeSubst(StringRef TypeName,
bool allowConcurrencyManglings);
```
It's the return value, so it should not impact the mangling of the
function, and the layout is the same as `std::optional`, so it should be
mostly okay. This function doesn't appear to have users, and the ABI was
already broken 2 years ago for concurrency and no one seemed to notice
so this should be "okay".
I'm doing the migration incrementally so that folks working on main can
cherry-pick back to the release/5.9 branch. Once 5.9 is done and locked
away, then we can go through and finish the replacement. Since `None`
and `Optional` show up in contexts where they are not `llvm::None` and
`llvm::Optional`, I'm preparing the work now by going through and
removing the namespace unwrapping and making the `llvm` namespace
explicit. This should make it fairly mechanical to go through and
replace llvm::Optional with std::optional, and llvm::None with
std::nullopt. It's also a change that can be brought onto the
release/5.9 with minimal impact. This should be an NFC change.
And replace them with explicit `metatype` instruction in the entry block.
This allows such metatype instructions to be deleted if they are dead.
This was already done for performance-annotated functions. But now do this for all functions.
It is essential that performance-annotated functions are specialized in the same way as other functions.
Because otherwise it can happen that the same specialization has different performance characteristics in different modules.
And it's up to the linker to select one of those ODR functions when linking.
Also, dropping metatype arguments is good for performance and code size in general.
This change also contains a few bug fixes for dropping metatype arguments.
rdar://110509780
When dropping the self metatype parameter of a method, it must become a "thin" function.
Fixes a crash when using performance annotations.
rdar://107202455
Although nonescaping closures are representationally trivial pointers to their
on-stack context, it is useful to model them as borrowing their captures, which
allows for checking correct use of move-only values across the closure, and
lets us model the lifetime dependence between a closure and its captures without
an ad-hoc web of `mark_dependence` instructions.
During ownership elimination, We eliminate copy/destroy_value instructions and
end the partial_apply's lifetime with an explicit dealloc_stack as before,
for compatibility with existing IRGen and non-OSSA aware passes.
- SILPackType carries whether the elements are stored directly
in the pack, which we're not currently using in the lowering,
but it's probably something we'll want in the final ABI.
Having this also makes it clear that we're doing the right
thing with substitution and element lowering. I also toyed
with making this a scalar type, which made it necessary in
various places, although eventually I pulled back to the
design where we always use packs as addresses.
- Pack boundaries are a core ABI concept, so the lowering has
to wrap parameter pack expansions up as packs. There are huge
unimplemented holes here where the abstraction pattern will
need to tell us how many elements to gather into the pack,
but a naive approach is good enough to get things off the
ground.
- Pack conventions are related to the existing parameter and
result conventions, but they're different on enough grounds
that they deserve to be separated.
This attribute indicates that the given SILFunction has to be
added to "accessible functions" section and could be looked up
at runtime using a special API.
I am adding this to make it easy to determine if a SILFunction that is not inout
aliasable is captured. This is useful when emitting certain types of
diagnostics like I need to emit with move only.
`getValue` -> `value`
`getValueOr` -> `value_or`
`hasValue` -> `has_value`
`map` -> `transform`
The old API will be deprecated in the rebranch.
To avoid merge conflicts, use the new API already in the main branch.
rdar://102362022
Now that it can be called on partial_apply instructions,
insertAfterFullEvaluation does not name what the function does. One
could imagine a function which inserted after the applies of
(non-escaping) partial_applies.
* [SILOptimizer] Add prespecialization for arbitray reference types
* Fix benchmark Package.swift
* Move SimpleArray to utils
* Fix multiple indirect result case
* Remove leftover code from previous attempt
* Fix test after rebase
* Move code to compute type replacements to SpecializedFunction
* Fix ownership when OSSA is enabled
* Fixes after rebase
* Changes after rebasing
* Add feature flag for layout pre-specialization
* Fix pre_specialize-macos.swift
* Add compiler flag to benchmark build
* Fix benchmark SwiftPM flags
We had two notions of canonical types, one is the structural property
where it doesn't contain sugared types, the other one where it does
not contain reducible type parameters with respect to a generic
signature.
Rename the second one to a 'reduced type'.
Andy some time ago already created the new API but didn't go through and update
the old occurences. I did that in this PR and then deprecated the old API. The
tree is clean, so I could just remove it, but I decided to be nicer to
downstream people by deprecating it first.
And replace them with explicit `metatype` instruction in the entry block.
This allows such metatype instructions to be deleted if they are dead.
rdar://94388453