Change the optimizer to only make specializations [fragile] if both the
original callee is [fragile] *and* the caller is [fragile].
Otherwise, the specialized callee might be [fragile] even if it is never
called from a [fragile] function, which inhibits the optimizer from
devirtualizing calls inside the specialization.
This opens up some missed optimization opportunities in the performance
inliner and devirtualization, which currently reject fragile->non-fragile
references:
TEST | OLD_MIN | NEW_MIN | DELTA (%) | SPEEDUP
--- | --- | --- | --- | ---
DictionaryRemoveOfObjects | 38391 | 35859 | -6.6% | **1.07x**
Hanoi | 5853 | 5288 | -9.7% | **1.11x**
Phonebook | 18287 | 14988 | -18.0% | **1.22x**
SetExclusiveOr_OfObjects | 20001 | 15906 | -20.5% | **1.26x**
SetUnion_OfObjects | 16490 | 12370 | -25.0% | **1.33x**
Right now, passes other than performance inlining and devirtualization
of class methods are not checking invariants on [fragile] functions
at all, which was incorrect; as part of the work on building the
standard library with -enable-resilience, I added these checks, which
regressed performance with resilience disabled. This patch makes up for
these regressions.
Furthermore, once SIL type lowering is aware of resilience, this will
allow the stack promotion pass to make further optimizations after
specializing [fragile] callees.
We ended up adding the same instruction twice to a SmallVector of
instructions to be deleted. To avoid this, we'll track these
to-be-deleted instructions in a SmallSetVector instead.
We were also failing to add an instruction that we can delete to the set
of instructions to be deleted, so I fixed that as well.
I've added a test case, but it's currently disabled because fixing this
turned up another issue in the same code which I still need to take a
look at.
Fixes rdar://problem/25369617.
This was mistakenly reverted in an attempt to fix buildbots.
Unfortunately it's now smashed into one commit.
---
Introduce @_specialize(<type list>) internal attribute.
This attribute can be attached to generic functions. The attribute's
arguments must be a list of concrete types to be substituted in the
function's generic signature. Any number of specializations may be
associated with a generic function.
This attribute provides a hint to the compiler. At -O, the compiler
will generate the specified specializations and emit calls to the
specialized code in the original generic function guarded by type
checks.
The current attribute is designed to be an internal tool for
performance experimentation. It does not affect the language or
API. This work may be extended in the future to add user-visible
attributes that do provide API guarantees and/or direct dispatch to
specialized code.
This attribute works on any generic function: a freestanding function
with generic type parameters, a nongeneric method declared in a
generic class, a generic method in a nongeneric class or a generic
method in a generic class. A function's generic signature is a
concatenation of the generic context and the function's own generic
type parameters.
e.g.
struct S<T> {
var x: T
@_specialize(Int, Float)
mutating func exchangeSecond<U>(u: U, _ t: T) -> (U, T) {
x = t
return (u, x)
}
}
// Substitutes: <T, U> with <Int, Float> producing:
// S<Int>::exchangeSecond<Float>(u: Float, t: Int) -> (Float, Int)
---
[SILOptimizer] Introduce an eager-specializer pass.
This pass finds generic functions with @_specialized attributes and
generates specialized code for the attribute's concrete types. It
inserts type checks and guarded dispatch at the beginning of the
generic function for each specialization. Since we don't currently
expose this attribute as API and don't specialize vtables and witness
tables yet, the only way to reach the specialized code is by calling
the generic function which performs the guarded dispatch.
In the future, we can build on this work in several ways:
- cross module dispatch directly to specialized code
- dynamic dispatch directly to specialized code
- automated specialization based on less specific hints
- partial specialization
- and so on...
I reorganized and refactored the optimizer's generic utilities to
support direct function specialization as opposed to apply
specialization.
Temporarily reverting @_specialize because stdlib unit tests are
failing on an internal branch during deserialization.
This reverts commit e2c43cfe14, reversing
changes made to 9078011f93.
This pass finds generic functions with @_specialized attributes and
generates specialized code for the attribute's concrete types. It
inserts type checks and guarded dispatch at the beginning of the
generic function for each specialization. Since we don't currently
expose this attribute as API and don't specialize vtables and witness
tables yet, the only way to reach the specialized code is by calling
the generic function which performs the guarded dispatch.
In the future, we can build on this work in several ways:
- cross module dispatch directly to specialized code
- dynamic dispatch directly to specialized code
- automated specialization based on less specific hints
- partial specialization
- and so on...
I reorganized and refactored the optimizer's generic utilities to
support direct function specialization as opposed to apply
specialization.
Pre-specializations were only used by Onone builds, but were kept inside the standard library dylyb anyways. This commit moves all the pre-specializations into a dedicated Swift module and a dynamic library, which are only used by Onone builds.
This reduces the code size of libswiftCore.dylib by 4%-5%.
With this re-abstraction a specialized function has the same calling convention as if it would have been written with the specialized types in the first place.
In general this results in less alloc_stacks and load/stores.
It also can eliminate some re-abstraction thunks, e.g. if a generic closure is used in a non-generic context.
It some (hopefully rare) cases it may require to add re-abstraction thunks.
In case a function has multiple indirect results, only the first is converted to a direct result. This is an open TODO.
Pre-specializations were only used by Onone builds, but were kept inside the standard library dylyb anyways. This commit moves all the pre-specializations into a dedicated Swift module and a dynamic library, which are only used by Onone builds.
This reduces the code size of libswiftCore.dylib by 5%.
This commit changes the Swift mangler from a utility that writes tokens into a
stream into a name-builder that has two phases: "building a name", and "ready".
This clear separation is needed for the implementation of the compression layer.
Users of the mangler can continue to build the name using the mangleXXX methods,
but to access the results the users of the mangler need to call the finalize()
method. This method can write the result into a stream, like before, or return
an std::string.
(libraries now)
It has been generally agreed that we need to do this reorg, and now
seems like the perfect time. Some major pass reorganization is in the
works.
This does not have to be the final word on the matter. The consensus
among those working on the code is that it's much better than what we
had and a better starting point for future bike shedding.
Note that the previous organization was designed to allow separate
analysis and optimization libraries. It turns out this is an
artificial distinction and not an important goal.