By convention, most structs and classes in the Swift compiler include a `dump()` method which prints debugging information. This method is meant to be called only from the debugger, but this means they’re often unused and may be eliminated from optimized binaries. On the other hand, some parts of the compiler call `dump()` methods directly despite them being intended as a pure debugging aid. clang supports attributes which can be used to avoid these problems, but they’re used very inconsistently across the compiler.
This commit adds `SWIFT_DEBUG_DUMP` and `SWIFT_DEBUG_DUMPER(<name>(<params>))` macros to declare `dump()` methods with the appropriate set of attributes and adopts this macro throughout the frontend. It does not pervasively adopt this macro in SILGen, SILOptimizer, or IRGen; these components use `dump()` methods in a different way where they’re frequently called from debugging code. Nor does it adopt it in runtime components like swiftRuntime and swiftReflection, because I’m a bit worried about size.
Despite the large number of files and lines affected, this change is NFC.
https://forums.swift.org/t/improving-the-representation-of-polymorphic-interfaces-in-sil-with-substituted-function-types/29711
This prepares SIL to be able to more accurately preserve the calling convention of
polymorphic generic interfaces by letting the type system represent "substituted function types".
We add a couple of fields to SILFunctionType to support this:
- A substitution map, accessed by `getSubstitutions()`, which maps the generic signature
of the function to its concrete implementation. This will allow, for instance, a protocol
witness for a requirement of type `<Self: P> (Self, ...) -> ...` for a concrete conforming
type `Foo` to express its type as `<Self: P> (Self, ...) -> ... for <Foo>`, preserving the relation
to the protocol interface without relying on the pile of hacks that is the `witness_method`
protocol.
- A bool for whether the generic signature of the function is "implied" by the substitutions.
If true, the generic signature isn't really part of the calling convention of the function.
This will allow closure types to distinguish a closure being passed to a generic function, like
`<T, U> in (*T, *U) -> T for <Int, String>`, from the concrete type `(*Int, *String) -> Int`,
which will make it easier for us to differentiate the representation of those as types, for
instance by giving them different pointer authentication discriminators to harden arm64e
code.
This patch is currently NFC, it just introduces the new APIs and takes a first pass at updating
code to use them. Much more work will need to be done once we start exercising these new
fields.
This does bifurcate some existing APIs:
- SILFunctionType now has two accessors to get its generic signature.
`getSubstGenericSignature` gets the generic signature that is used to apply its
substitution map, if any. `getInvocationGenericSignature` gets the generic signature
used to invoke the function at apply sites. These differ if the generic signature is
implied.
- SILParameterInfo and SILResultInfo values carry the unsubstituted types of the parameters
and results of the function. They now have two APIs to get that type. `getInterfaceType`
returns the unsubstituted type of the generic interface, and
`getArgumentType`/`getReturnValueType` produce the substituted type that is used at
apply sites.
Structurally prevent a number of common anti-patterns involving generic
signatures by separating the interface into GenericSignature and the
implementation into GenericSignatureBase. In particular, this allows
the comparison operators to be deleted which forces callers to
canonicalize the signature or ask to compare pointers explicitly.
This memoizes the result, which is fine for all callers; the only
exception is open existential types where each new open existential
now explicitly gets a unique generic environment, allocated by
calling GenericEnvironment::getIncomplete().
Rather than storing the set of input requirements in a
(SIL)SpecializeAttr, store the specialized generic signature. This
prevents clients from having to rebuild the same specialized generic
signature on every use.
This improves on the previous situation:
- The request ensures that the backing storage for lazy properties
and property wrappers gets synthesized first; previously it was
only somewhat guaranteed by callers.
- Instead of returning a range this just returns an ArrayRef,
which simplifies clients.
- Indexing into the ArrayRef is O(1), which addresses some FIXMEs
in the SIL optimizer.
With the advent of dynamic_function_ref the actual callee of such a ref
my vary. Optimizations should not assume to know the content of a
function referenced by dynamic_function_ref. Introduce
getReferencedFunctionOrNull which will return null for such function
refs. And getInitialReferencedFunction to return the referenced
function.
Use as appropriate.
rdar://50959798
A prespecialized function may reference a non-public stdlib
symbols. Force link the function body when it is
specialized. Normally, the SILLinker does this, but it cannot see
through the prespecialize proxy function.
All symbols that must be prespecialized are now explicitly
requested. There's no accidental prespecialization, so there's no need
for special logic to adjust the specialized function linkage. Remove
all of that.
When compiling SwiftOnoneSupport, issue errors for missing functions which are expected in the module.
This ensures ABI compatibility.
rdar://problem/48924409
When compiling the OnoneSupport library, the compiler checks for @_semantics("prespecialize.X") attributes to pre-specialize function X.
rdar://problem/48924409
Add the list of symbols from the swift-5.0 release and only use that symbols to refer to pre-specializations in a Onone build.
This ensures that future Onone executables can link to an old swift 5.0 libswiftSwiftOnoneSupport library.
rdar://problem/48924409
This is an obvious drive-by fix. It will crash when building
Foundation after I commit changes to the pipeline. My attempts at
creating a unit test were unsuccessful because it depends on some
interaction between inlining and specialization heuristics.
It's @_semantics("optimize.sil.specialize.generic.size.never")
It is similar to "optimize.sil.specialize.generic.partial.never", but only prevents specialization if the optimization mode is Size
Previously, the EagerSpecializer pass would sometimes call a method on a null CanSpecializedGenericSignature. The method happened to never touch `this` if it was null, but UBSan still considers the call to be undefined behavior.
This change tests for the condition ahead of time and manually implements equivalent behavior without calling the method.
I am going to add the code in a bit that does the notifications. I tried to pass
down the builder instead of the pass manager. I also tried not to change the
formatting.
rdar://42301529
This commit does not modify those APIs or their usage. It just:
1. Moves the APIs onto SILFunctionBuilder and makes SILFunctionBuilder a friend
of SILModule.
2. Hides the APIs on SILModule so all users need to use SILFunctionBuilder to
create/destroy functions.
I am doing this in order to allow for adding/removing function notifications to
be enforced via the type system in the SILOptimizer. In the process of finishing
off CallerAnalysis for FSO, I discovered that we were not doing this everywhere
we need to. After considering various other options such as:
1. Verifying after all passes that the notifications were sent correctly and
asserting. Turned out to be expensive.
2. Putting a callback in SILModule. This would add an unnecessary virtual call.
I realized that by using a builder we can:
1. Enforce that users of SILFunctionBuilder can only construct composed function
builders by making the composed function builder's friends of
SILFunctionBuilder (notice I did not use the word subclass, I am talking
about a pure composition).
2. Refactor a huge amount of code in SILOpt/SILGen that involve function
creation onto a SILGenFunctionBuilder/SILOptFunctionBuilder struct. Many of
the SILFunction creation code in question are straight up copies of each
other with small variations. A builder would be a great way to simplify that
code.
3. Reduce the size of SILModule.cpp by 25% from ~30k -> ~23k making the whole
file easier to read.
NOTE: In this commit, I do not hide the constructor of SILFunctionBuilder since
I have not created the derived builder structs yet. Once I have created those in
a subsequent commit, I will hide that constructor.
rdar://42301529
So far we immediately bailed once we detect a cycle in specializations. But it turned out that this prevented efficient code generation for some stdlib functions like compactMap.
With this change we allow specialization of cycles up to a depth of 1 (= still very limited to prevent code size explosion in some corner cases).
The effect of this optimization is tested with the existing benchmark FatCompactMap.
SR-7952, rdar://problem/41005326
The "subclass scope" is meant to represent a connection to a vtable (and how
public something needs to be), for things that end up in class
vtables. Specializations and thunks are mostly internal implementation details
and do not end up there, so subclass scope is not applicable to them. This stops
the thunks and specializations being incorrectly public.
(Note, there are some thunks that _are_ public facing: if a function has its
signature optimized, the original entry point becomes a thunk, and this entry
point is what ends up in vtables etc., so needs to remain around, which means
keeping the same hacks for `private` members of an `open` class.)
Fixes rdar://problem/40738913.
SubstitutionMaps are now just a trivial pointer-sized value, so
pass them by value instead.
I did have to move a couple of functors from Type.h to SubstitutionMap.h
to resolve some issues with forward declarations.
There isn't a clean cut point here, so switch
GenericSpecializationInformation from SubstitutionList to
SubstitutionMap and carry along dual SubstitutionMap/SubstitutionList
representations for a small part of ReabstractionInfo.