When a particular nominal type or extension thereof declares conformance
to a protocol, check whether that type or extension contains any members
that *nearly* match a defaulted requirement (i.e., a requirement that
is satisfied by something in a protocol extension), but didn’t match
for some reason and weren’t used to satisfy any other requirement of
that protocol. It’s intended to catch subtle mistakes where a default
gets picked instead of the intended member.
This is a generalization of the code we’ve had for @objc optional
requirements for a long time.
Fixes rdar://problem/24714887.
Otherwise, a protocol conformance where the witness was a dynamic
property in another module would trigger an assertion while building
the materializeForSet witness, or miscompile and fail at runtime
if asserts are off.
Support for @noescape SILFunctionTypes.
These are the underlying SIL changes necessary to implement the new
closure capture ABI.
Note: This includes a change to function name mangling that
primarily affects reabstraction thunks.
The new ABI will allow stack allocation of non-escaping closures as a
simple optimization.
The new ABI, and the stack allocation optimization, also require
closure context to be @guaranteed. That will be implemented as the
next step.
Many SIL passes pattern match partial_apply sequences. These all
needed to be fixed to handle the convert_function that SILGen now
emits. The conversion is now needed whenever a function declaration,
which has an escaping type, is passed into a @NoEscape argument.
In addition to supporting new SIL patterns, some optimizations like
inlining and SIL combine are now stronger which could perturb some
benchmark results.
These underlying SIL changes should be merged now to avoid conflicting
with other work. Minor benchmark discrepancies can be investigated as part of
the stack-allocation work.
* Add a noescape attribute to SILFunctionType.
And set this attribute correctly when lowering formal function types to SILFunctionTypes based on @escaping.
This will allow stack allocation of closures, and unblock a related ABI change.
* Flip the polarity on @noescape on SILFunctionType and clarify that
we don't default it.
* Emit withoutActuallyEscaping using a convert_function instruction.
It might be better to use a specialized instruction here, but I'll leave that up to Andy.
Andy: And I'll leave that to Arnold who is implementing SIL support for guaranteed ownership of thick function types.
* Fix SILGen and SIL Parsing.
* Fix the LoadableByAddress pass.
* Fix ClosureSpecializer.
* Fix performance inliner constant propagation.
* Fix the PartialApplyCombiner.
* Adjust SILFunctionType for thunks.
* Add mangling for @noescape/@escaping.
* Fix test cases for @noescape attribute, mangling, convert_function, etc.
* Fix exclusivity test cases.
* Fix AccessEnforcement.
* Fix SILCombine of convert_function -> apply.
* Fix ObjC bridging thunks.
* Various MandatoryInlining fixes.
* Fix SILCombine optimizeApplyOfConvertFunction.
* Fix more test cases after merging (again).
* Fix ClosureSpecializer. Hande convert_function cloning.
Be conservative when combining convert_function. Most of our code doesn't know
how to deal with function type mismatches yet.
* Fix MandatoryInlining.
Be conservative with function conversion. The inliner does not yet know how to
cast arguments or convert between throwing forms.
* Fix PartialApplyCombiner.
Except GenericEnvironment.h, because you can't meaningfully use a
GenericEnvironment without its signature. Lots less depends on
GenericSignature.h now. NFC
It didn't, because the bitcode format said we only needed 8 possible
kinds of record within this block, which was a lie when both of these
flags were passed.
This is a backwards-compatible change, so no need to update the module
format version number.
Now that the GenericSignatureBuilder is no longer sensitive to the input
module, stop uniquing the canonical GSBs based on that module. The main
win here is when deserializing a generic environment: we would end up
creating a canonical GSB in the module we deserialized and another
canonical GSB in the module in which it is used.
When an associated type declaration “overrides” (restates) an associated
type from a protocol it inherits, note that it overrides that declaration.
SourceKit now reports overrides of associated types.
This replaces the '[volatile]' flag. Now, class_method and
super_method are only used for vtable dispatch.
The witness_method instruction is still overloaded for use
with both ObjC protocol requirements and Swift protocol
requirements; the next step is to make it only mean the
latter, also using objc_method for ObjC protocol calls.
Pre-specializations need some special handling when it comes to the Serialized attribute. Their bodies should not be SIL serialized. Instead, only their declarations should be serialized.
And since their bodies are not serialized and cannot be imported by the client code, it is OK if pre-specializations reference non-fragile functions inside their bodies. Due to the same reason, it is fine if pre-specializations are referenced from fragile functions, even though these pre-specializations are not fragile in a usual sense.
introduce a common superclass, SILNode.
This is in preparation for allowing instructions to have multiple
results. It is also a somewhat more elegant representation for
instructions that have zero results. Instructions that are known
to have exactly one result inherit from a class, SingleValueInstruction,
that subclasses both ValueBase and SILInstruction. Some care must be
taken when working with SILNode pointers and testing for equality;
please see the comment on SILNode for more information.
A number of SIL passes needed to be updated in order to handle this
new distinction between SIL values and SIL instructions.
Note that the SIL parser is now stricter about not trying to assign
a result value from an instruction (like 'return' or 'strong_retain')
that does not produce any.
Previously we stored this inside each default argument
initializer context. This was overkill, because it is
the same for all default arguments in a single function,
and also insufficient, because initializer contexts are
not serialized and thus not available in SILGen when
the function is in a different module.
Instead store it directly inside the function and
serialize it.
NFC for now, since SILGen isn't using this yet.