Rather than pretend that the requirement signature of a protocol is a
full, well-formed generic signature that one can meaningfully query,
treat it as a flat set of requirements. Nearly all clients already did
this, but make it official. NFC
This is accomplished by recognizing this specific situation and
replacing the 'objc' attribute with a hidden '_objcRuntimeName'
attribute. This /only/ applies to classes that are themselves
non-generic (including any enclosing generic context) but that have
generic ancestry, and thus cannot be exposed directly to Objective-C.
This commit also eliminates '@NSKeyedArchiverClassName'. It was
decided that the distinction between '@NSKeyedArchiverClassName' and
'@objc' was too subtle to be worth explaining to developers, and that
any case where you'd use '@NSKeyedArchiverClassName' was already a
place where the ObjC name wasn't visible at compile time.
This commit does not update diagnostics to reflect this change; we're
going to change them anyway.
rdar://problem/32414557
With the introduction of special decl names, `Identifier getName()` on
`ValueDecl` will be removed and pushed down to nominal declarations
whose name is guaranteed not to be special. Prepare for this by calling
to `DeclBaseName getBaseName()` instead where appropriate.
Printing a declaration's name using `<<` and `getBaseName()` is be
independent of the return type of `getBaseName()` which will change in
the future from `Identifier` to `DeclBaseName`
There can be a circularity when two enums recur through each other, and deserialization currently is not set up to robustly detect and avoid these circularities. This should avoid regressions, but re-exposes some possible cases that should require recovery in mix-and-match situations. Short-term fix for rdar://problem/32337278.
Use 'hasAssociatedValues' instead of computing and discarding the
interface type of an enum element decl. This change has specifically not
been made in conditions that use the presence or absence of the
interface type, only conditions that depend on the presence or absence
of associated values in the enum element decl.
If any of the witnesses were missing (because the requirement was
optional or marked unavailable), we would forget to count it,
which led to us dropping or even misinterpreting further witness
records. This led to strange crashes down the line when the type
checker would expect witness entries to be present when they weren't.
People were getting confused when it said "module compiled with Swift
3.1 cannot be imported into Swift 4.0" when they were passing
"-swift-version 3".
rdar://problem/32187112
Layout for an enum depends very intimately on its cases---both their
existence and what their payload types are. That means there's no way
to "partly" recover from failure to deserialize an individual case's
payload type, the way we can partly recover from failing to
deserialize an initializer in a class. Add deserialization recovery
to enums by validating all of their payload types up front, and
dropping the enum if we can't import all of the cases.
This is the first time where we're trying to do deserialization
recovery for a /type/, and that could have many more ripple effects
than for a var/func/subscript/init. A better answer here might be to
still import the enum but mark it as unavailable, but in that case
we'd have to make sure to propagate that unavailability to anything
that /used/ the enum as well. (In Swift, availability is checked based
on use of the name, so if someone manages to refer to an enum using
inferred types we'd be in trouble.)
There is one case here that's not covered: if an enum case has a
payload that references a type declaration nested within the enum, but
then that nested type /itself/ can't be loaded for some reason, we
have no way to check that up front, because we can't even try to load
the nested type without loading its parent DeclContext (the enum). I
can't think of an easy solution for this right now.
(In the future, we'll be able to support dropping a single case for
resilient enums. But we're not there right now.)
rdar://problem/31920901
Previously we recorded the canonical type of the declaration and made
sure we could deserialize that, but that's a lot of extra work
building up intermediate types that we mostly don't need. Instead,
record smaller types that represent the possible points of failure---
right now, just the nominal types that are referenced by the value
(function, variable/constant, subscript, or initializer). I chose to
use types instead of declarations here because types can potentially
encode more complicated constraints later (such as generic types
checking that their arguments still conform).
This gains us back 20% of type-checking time on a compile-time
microbenchmark: `let _ = [1, 2]`. I expect the effect is less dramatic
the more expressions you have, since we only need to deserialize
things once.
Fixes a class of deserialization issues in the merge-modules
step.
The setup was the following:
- File A defines a typealias A whose underlying type is a nested
type S of a type T, defined in a different module.
- File B defines an extension of T, and the extension member's
type references A.
When deserializing A, we would proceed to deserialize the
underlying type, which references T.S. This would first deserialize
T and perform a name lookup to find S, which would deserialize all
members, including pulling in extensions. Deserialization of the
extension defined in file B would then fail, because the declaration
for A is not yet available.
We had a previous fix for these problems in the single-module case;
a per-file lookup table mapping mangled nested type names to
declarations, allowing a nested type to be deserialized without
pulling in all members and extensions of its parent type.
This patch generalizes the nested type lookup table allowing it to
be used to resolve cross-module references as well. Also, we were
only writing out the nested type table when serializing a partial
swiftmodule corresponding to a source file. Removing this check
allows the nested type table to be serialized for modules built
with WMO enabled as well, such as the standard library.
Fixes <rdar://problem/30976604> and
<https://bugs.swift.org/browse/SR-4208>.
Make generic environment deserialization lazy, which eliminates a
significant amount of up-front work. Most clients only need the
generic signature, not the full generic environment.
This isn't an inherent limitation of the language---in fact, it would
be a problem for library evolution if you had to know a superclass's
full vtable contents to generate the vtable for a subclass. However,
that's exactly where we are today, and that's not going to change for
Swift 4.
One small hole in the Swift 3 / Swift 4 story.
More rdar://problem/31878396
This means both not crashing when we deserialize the protocol but
also emitting correct offsets for dynamic dispatch through the
protocol's witness table.
Also fix a bug with vtable and witness table slots for
materializeForSet accessors for properties that can't be
imported. Because materializeForSet doesn't have the type of the
property in its signature, it was taking a different failure path from
everything else, and that failure path didn't properly set the name or
flags for the missing member.
Finishes rdar://problem/31878396
As such, we no longer insert two placeholders for initializers that
need two vtable slots; instead we record that in the
MissingMemberDecl. I can see MissingMemberDecl growing to be something
we'd actually show to users, that can be used for other kinds of
declarations that don't have vtable entries, but for now I'm not going
to worry about any of that.
That is, whether an initializer is 'required', and either does not
override anything or overrides a non-required initializer. We don't
use this for anything now, but it'll show up in the next commit.
Till now createApply, createTryApply, createPartialApply were taking some arguments like SubstCalleeType or ResultType. But these arguments are redundant and can be easily derived from other arguments of these functions. There is no need to put the burden of their computation on the clients of these APIs.
The removal of these redundant parameters simplifies the APIs and reduces the possibility of providing mismatched types by clients, which often happened in the past.
Deserializing a witness record in a conformance may fail if either of the requirement or witness changed name or type, most likely due to SDK modernization changes across Swift versions. When this happens, leave an opaque placeholder in the conformance to indicate that the witness exists but we don't get to see it. For expedience, right now this just witnesses the requirement to itself, so that code in the type checker or elsewhere that tries to ad-hoc devirtualize references to the requirement just gets the requirement back. Arguably, we shouldn't include the witness at all in imported conformances, since they should be an implementation detail, but that's a bigger, riskier change. This patch as is should be enough to address rdar://problem/31185053.
All we need to store is whether the SILDeclRef directly
references the declaration, or if it references a curry
thunk, and we already have an isCurried bit for that.
Replace `NameOfType foo = dyn_cast<NameOfType>(bar)` with DRY version `auto foo = dyn_cast<NameOfType>(bar)`.
The DRY auto version is by far the dominant form already used in the repo, so this PR merely brings the exceptional cases (redundant repetition form) in line with the dominant form (auto form).
See the [C++ Core Guidelines](https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#es11-use-auto-to-avoid-redundant-repetition-of-type-names) for a general discussion on why to use `auto` to avoid redundant repetition of type names.
This lets us serialize that decision, which means we can conceivably
/change/ the decision in later versions of the compiler without
breaking existing code. More immediately, it's groundwork that will
eventually allow us to drop decls from the AST without affecting
vtable layout.
This isn't actually a great answer; what we really want is for SIL
vtables to be serialized consistently and treated as the point of
truth. But that would be more change than we're comfortable taking in
the Swift 4 timeframe.
First part of rdar://problem/31878396.
This attribute allows one to provide the "legacy" name of a class for
the purposes of archival (via NSCoding). At the moment, it is only
useful for suppressing the warnings/errors about classes with unstable
archiving names.
A cross-reference in a module cannot refer to a parsed entity, because the parsed entity couldn’t have been seen when the module was built. Filter these out, which prevents a crash in the subsequent commit.
Finishes up the "big four" non-type decl kinds. Unfortunately,
indiscriminately dropping members from a class affects the layout
of its vtable. That issue is tracked by rdar://problem/31878396.